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Disclaimer  

 
The opinions, findings, and conclusions expressed in this publication are those of the 
authors and not necessarily those of the State of Florida Department of Transportation. 
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Metric Conversion Chart 
 

APPROXIMATE CONVERSIONS TO SI UNITS 
SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

LENGTH 
in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in2 square inches 645.2 square 

millimeters 
mm2 

ft2 square feet 0.093 square meters m2 
yd2 square yard 0.836 square meters m2 
ac acres 0.405 hectares ha 
mi2 square miles 2.59 square 

kilometers 
km2 

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 
yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3 
MASS 

oz ounces 28.35 grams g 
lb pounds 0.454 kilograms kg 
T short tons (2000 lb) 0.907 megagrams (or 

"metric ton") 
Mg (or "t") 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 

or (F-32)/1.8 
Celsius oC 

ILLUMINATION 
fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2 

FORCE and PRESSURE or STRESS 
lbf poundforce 4.45 newtons N 

lbf/in2 poundforce per 
square inch 

6.89 kilopascals kPa 

*SI is the symbol for the International System of Units. Appropriate rounding should be 
made to comply with Section 4 of ASTM E380. 
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Executive Summary 

 

The SunGuide TMC software is an Intelligent Transportation Systems (ITS) software that 

has been deployed by the Florida Department of Transportation (FDOT) districts 

throughout the state of Florida. The ITS data collected by the SunGuide software can be 

used to support both real-time and long-term strategic decision making processes at the 

Traffic Management Centers (TMCs). The goal of this project is to develop decision 

support tools to support traffic management operations based on the collected ITS data. 

The specific objectives of this project are: 

• Determining the needs for the development of decision support tools for 

TMC applications  

• Develop and test decision support tools based on the identified needs 

• Document all results, products, and conclusions of this project  

At the beginning of the project, a requirement analysis task was conducted to 

review the needs of FDOT TMCs for decision support tools based on interviews with the 

FDOT district ITS engineers, TMC operation managers, and Central Office ITS section 

staff.  The project developments are in accordance with the needs of the FDOT TMCs 

identified in the requirement analysis task.  

 

Travel Time Estimation 

 

One of the important tasks identified in the requirement analysis was the need to 

investigate methods for travel time estimation based on point detector data under 

different conditions such as different congestion levels, incident conditions, detector 

errors, and various estimation method basic parameters.  

A review of previous studies indicates that although speed-based methods similar 

to those used in the SunGuide software can produce acceptable results at lower levels of 

congestion, there are questions regarding their abilities to produce accurate and reliable 

estimates of travel times under recurrent and non-recurrent congested conditions. This 

study has developed two hybrid on-line travel time estimation models and two 
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corresponding off-line methods to estimate freeway travel times based on point detector 

measurements. Hybrid Model 1 combines the Mid-Point method (which is similar to the 

SunGuide method) with a traffic flow-based method. Hybrid Model 2 combines the Mid-

Point method with the Minimum Speed method. The switching between the travel time 

estimation methods within each model is accomplished based on the congestion levels 

and queue status. In addition, during incident conditions with fast changing queue 

lengths, refinements are introduced to the developed models to account for the fast queue 

prorogation and recovery. 

The travel time estimates obtained from existing speed-based methods, traffic 

flow-based method, and the developed models are tested by using both simulation and 

real-world travel time data as ground truth data. The results indicate that all of the tested 

methods perform at acceptable and comparable levels at low congestion levels. However, 

their performances vary with the increase in congestion levels. The comparison with 

other estimation methods shows that the developed hybrid models perform well in all 

cases. Further comparisons between the on-line and off-line travel time estimation results 

reveal that off-line methods perform significantly better only during fast changing 

congested conditions such as during incidents. The difference in performance between 

the on-line and off-line methods increases with the increase in congestion levels.  

During low congestion levels, the Minimum Speed method and flow-based 

methods produce slightly less accurate results compared to other methods. However, the 

difference is not significant. For moderately recurrent congested conditions assessed 

using real-world travel time measurements, the minimum speed method and Hybrid 

Model 2 perform the best among the tested methods. The traffic flow method and Hybrid 

Model 1 also perform relatively well compared to other methods. Comparing the results 

from the off-line methods with those from the on-line methods indicates that the off-line 

estimation improves the travel time estimation slightly. 

For fast changing conditions during incidents; simulation results indicate that the 

SunGuide method underestimates the travel time during the queue forming stage, and 

overestimate the travel time at the end of lane blockage. Similar trends can be found for 

other methods at varying degrees depending on the tested method and the degree of 

congestion. The flow-based methods, the Minimum Speed method, and the developed 



Decision Support Tools to Support the Operations of TMCs 

vii 

 

hybrid models perform better than other speed-based models. However, they also 

overestimate the travel times at the later stages of lane blockage due to the effect of the 

front recovery shockwave during incident clearance. This overestimation becomes higher 

with the increase in the queuing severity during incidents. The refinements introduced to 

account for queue propagation and recovery stages are proposed to deal with these 

estimation problems.  

Based on the results of this study, it is recommended that the Minimum Speed 

Method and/or the Hybrid Model 2 developed in this research are considered for 

implementation and testing in SunGuide. This recommendation is based on these model 

performances and the ease of their implementations compared to traffic flow models. The 

refinements to account for queue growth and dissipation dynamics should be also 

considered.   

SunGuide includes a limited real-time testing for detector errors. Additional real-

time testing for erroneous detector data is presented in this document and is 

recommended for use in the SunGuide software. The impacts of major influential factors, 

such as data preprocessing procedures, detector errors, and travel time posting strategies, 

on the performance of travel time estimation, are investigated in this study. The 

sensitivity analysis results show that these factors do not have significant impacts on the 

estimation accuracy and reliability during uncongested conditions, however, for incident 

conditions, the travel time estimation performs better with the usage of a short rolling 

period for data smoothing, more accurate detector data, and frequent travel time updating. 

The results of the investigation presented in this document indicates that the 

spatial imputation method used in the SunGuide software to account for missing data 

appears to perform as good as other investigated methods. When estimating travel time 

during incident conditions, the use of the exponential moving average produces more 

accurate and reliable results compared to the simple moving average method used in 

SunGuide, since the exponential moving average method can give more weights to the 

latest data in the smoothing and thus can account better for the fast changing dynamic 

conditions during incidents. When using the simple moving average method during 

incident conditions, shorter rolling time periods produce better results.  
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The results of the study also show that intrinsic errors due to measurement noise, 

systematic errors (e.g., due to inadequate calibration or device inaccuracy), and data 

missing due to incidental and/or structural failure can affect negatively the performance 

of travel time conditions during congested conditions but not uncongested conditions. 

The results from this study indicates that for uncongested conditions, a longer 

travel time updating interval does not lead to worse estimation performance. For incident 

scenarios, the errors increase and the reliability decreases with the increase in travel time 

update interval. The errors also increase with the increase in the travel time link length 

under incident conditions. It appears that a posted travel time range of two-three minutes 

generally produces good results for uncongested conditions. However, if the travel time 

range is further reduced to one minute, the reliability of the estimated travel time is 

significantly impacted. For incident scenario, slightly larger travel time range may 

increase the reliability of travel time estimation, but the improvement is not significant.  

 

Diversion Rate Estimation 

 

A number of technologies are deployed for disseminating information to travelers. 

One of the most important parameters for assessing the impacts and benefits of these 

deployments is the diversion rates under different incident and traffic conditions. The 

estimation of the diversion rate is important to justify the deployments from a cost and 

benefit point of view. In addition, the estimation will support the assessment of the 

guidelines and procedures of information dissemination. Estimating the percentages of 

travelers likely to divert to alternative routes also allows better estimation of the impacts 

on the alternative routes and the optimization of signal timings on these routes during 

incident conditions. In this research, a method was developed to estimate traffic diversion 

based on the traffic detector and incident data. Regression models were developed for a 

case study to estimate the diversion rate as a function of potential influencing factors.  

The developed models indicate that daylight versus night condition, the level of traffic 

demands, queuing delay, and queue length are significant factors affecting the diversion 

rate.  
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Time Lag between Incident Occurrence and Recording 

 

One of the important performance measures of incident management is incident 

detection.  Incident detection time is defined as the time from the occurrence of the 

incident to the time when the first incident management agency is notified of the incident 

occurrence.  However, this time cannot be estimated based on incident management data. 

This is because the first time that the incident appears in the TMC incident management 

database is when the TMC is notified, which is the time that the TMC operators become 

aware of the incident. There have been no good methods to estimate the time lag between 

incident occurrence and TMC recording of the incident. This time lag is referred to in this 

study as the incident recording time lag. This measure is important because the longer it 

takes for an agency to record the incidents in its database, the shorter the calculated 

incident duration will appear based on analyzing this database, which is obviously not 

correct. This study has developed a method to determine the incident recording time lag 

based on a combination of detailed traffic detector and incident management databases.  
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Estimation of Secondary Incidents 

 

This study has also developed a method to estimate freeway secondary crashes 

and their contributing factors. The method identifies secondary crashes as those that 

occur upstream of an incident within the estimated queue length and queue dissipation 

time of the primary incident. Both descriptive statistics and logistic regression analyses 

are applied to identify potential factors that contribute to these crashes. The regression 

model developed indicates that the factors that have significant effects on the likelihood 

of secondary crash occurrence include primary incident type, primary incident lane 

blockage duration, time of day, and the corridor on which the incident occurs.  

 

Estimation of Incident Impacts and Severity Levels 

 

Effective incident management requires the identification of incident severity and 

its potential impacts on the transportation system and its users. For on-line applications, 

while incidents are active, this identification allows agencies to determine the required 

levels of response such as dynamic message sign messaging decisions, diversion plan 

activations, and allocation of response resources. For off-line applications, analyzing 

historical data to classify incidents by severity level allows for the better planning of 

incident management activities.   

This study presents models and methods to estimate the potential incident impacts 

on mobility and safety in real-time. In addition, a new method is developed to allow 

incidents to be classified into categories based on primary incident attributes and impacts. 

These attributes and impacts include the number of lanes blocked, predicted incident 

duration, estimated queue length, average delay, and secondary incident probability.  

A model developed in this study to estimate lane blockage duration shows that 

several factors affect this duration including the time of day that the incident occurs, 

incident verification and response times, environmental factors, incident type, incident 

response, activated incident management processes, and incident attributes.  
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1. Introduction 

1.1. Background 

Traffic management center (TMC) operations are critical components of advanced traffic 

management systems. At TMC, critical decisions are made in both real-time and off-line to 

optimize the performance of the transportation systems. Intelligent transportation Systems (ITS) 

are generating a wealth of real-time and historical data that can be used in combination with 

traffic analysis, simulation modeling, data fusion/data mining, and optimization to support the 

decisions made by TMC operators and managers  

In Florida, there are currently ten traffic management centers that are managed by the 

Florida Department of Transportation (FDOT). The FDOT traffic management centers in Florida 

are responsible for incident management activities, controlling various Intelligent Transportation 

Systems (ITS) devices, and the exchange of traffic information with other transportation 

agencies. The existing FDOT TMCs are: 

• FDOT District 1 TMC in Fort Myers 

• FDOT District 2 TMC in Jacksonville 

• FDOT District 4 TMCs in Fort Lauderdale and West Palm Beach 

• FDOT District 5 TMC in Orlando 

• FDOT District 6 TMC in Miami 

• FDOT District 7 TMC in Tampa 

• Florida Turnpike Enterprise TMCs at Turkey Lake and Pampano Beach Turnpike 

plazas 

In addition, it is expected that by early 2011, FDOT District 3 will start operating a TMC 

located in Pensacola, Florida.   

A large proportion of the urban limited access corridors in Florida are currently equipped 

with traffic detectors deployed as part of ITS. Data from these traffic detectors are currently 

being used and archived by the FDOT TMCs. In addition, detailed incident management data are 

being collected and archived as well. Data from these sources can be used to support both real-

time and long-term strategic decision making processes at the TMCs throughout the state. The 

analysis of real-time and historical data using advanced computational techniques will provide 
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the FDOT engineers and TMC operators with the information necessary to make better operation 

and maintenance decisions and to disseminate more accurate and reliable information to 

travelers.  

1.2. Project Objectives 

The goal of this project is to develop decision support tools to support traffic 

management operations based on the collected ITS data. The specific objectives of this project 

are: 

• Determining the needs for the development of decision support tools for TMC 

applications  

• Develop and test decision support tools based on the identified needs 

• Document all results, products, and conclusions of this project  

1.3. ITS Data 

The SunGuide TMC software is a set of ITS software that allows for the control of 

roadway devices as well as the exchange of information across transportation agencies. The 

software represents a common software base that has been deployed by FDOT districts 

throughout the state of Florida.  

The SunGuide system maintains operational data in several different places for use in 

report generation. Aggregated operational data are stored in Oracle database files, while the raw 

data are stored in comma separated (CSV format). Below is a description of the two archived 

SunGuide files that were used for the purpose of this study: 

• Incident Archives: For each SunGuide incident record, the stored information 

includes incident timestamps (detection, notification, arrivals, and departures), 

incident ID, responding agencies, event details, chronicle of the event, and 

environmental information. The detection timestamp is the time when an incident is 

reported to the TMC and inputted in the SunGuide system. The notification 

timestamps are recorded per responding agency and refer to the time when such 

responding agencies are notified. The arrival and departure timestamps are also 
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recorded per responding agency and refer to the time when responding agencies 

arrive and depart from the incident site. 

• Detector Data Archives: The traffic condition data are stored in Traffic Sensor 

System (TSS) text flat files, with each file including data for all the detection stations 

for a 24-hour day. The TSS file contains one record for each lane of each detection 

station for every 20-second polling interval. Each TSS data record includes the 

following information: timestamp, detection station name, lane number, speed, 

occupancy, and raw count. 

In addition, the Statewide Transportation Engineering Warehouse for Archived Regional 

Data (STEWARD) has been developed as a proof of concept prototype for the collection and use 

of ITS data in Florida (Courage and Lee, 2008). The current effort has concentrated on archiving 

point traffic detector data and travel time estimates. The STEWARD database contains 

summaries of traffic volumes, speeds, and occupancies collected from point traffic detectors. 

This database was also used in this study, as described when discussing the various 

developments of this project.  

1.4. References 

Courage, K.G. and S. Lee. Development of a Central Data Warehouse for Statewide ITS and 

Transportation Data in Florida: Phase II Proof of Concept. A Report Developed for the Florida 

Department of Transportation by the University of Florida, Tallahassee, FL, 2008. 

 



Decision Support Tools to Support the Operations of TMCs 

4 

 

2. Requirements Analysis 
 

This chapter summarizes the activities and results of a task conducted at the beginning of 

this project to review the needs of TMCs for decision support tools based on interviews with the 

FDOT district ITS engineers, TMC operation managers, and Central Office ITS section staff. 

The interviews were conducted face-to-face in some cases and using internet-based conference 

calls with shared Microsoft Power Point presentations in others. The results from the interviews 

were analyzed to identify the areas of focus in the research.  The following sections discuss 

theses interviews, the associated results, the analysis of the results, and recommendations of 

focus areas for this study. 

2.1. Initial Lists of Focus Areas 

Initially, the research team identified potential areas for the focus of the research in this 

project. This identification was based on an assessment of the TMC operation processes and the 

SunGuideTM software modules. The following is a list of these initial focus areas: 

• Incident detection  

• Situation assessment 

• Accurate and reliable travel time estimation 

• Detector malfunction detection and correction 

• Optimization of ITS Resources 

• Device maintenance  

• Diversion support  

• Assessment of the effectiveness of ITS devices 

Within each of the above areas, initial research topics were identified. These areas and 

topics formed starting points of discussions in meetings later conducted with the FDOT 

stakeholders to identify the research needs related to the objectives of the study. Based on the 

results of the meetings, the initial areas and topics were revised, expanded, and prioritized as 

discussed later in this chapter. 
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2.2. Interview Results 

This section presents a summary of the results of the interviews conducted as part of this 

project. 

2.2.1.  FDOT District 1 

A web-based meeting was conducted with FDOT District 1 ITS staff to discuss the focus 

areas that are considered by FDOT District 1 as high priority areas. At the time of the interview, 

FDOT District 1 had just started its TMC operations. Below is a summary of the discussion with 

FDOT District 1:  

• The areas of interest from the most important to the least important are accurate and 

reliable travel time, incident detection, optimization of road ranger service patrol 

operations, diversion plan development, and device maintenance. 

• Travel time estimation is a high priority and many of the issues discussed regarding 

this focus area were considered to be important by FDOT District 1. 

• Topics related to situation analysis are important including the following:  

o Better definition of incident severity levels is important since this could be used 

for better identification of response plans. 

o Incident detection including a method to automate the selection of the parameters 

for incident detection in the SunGuide software. 

• Optimization of Road Ranger service patrol is important.  

• With regard to device maintenance, device lives need to be tracked. However, FDOT 

District 1 did not have maintenance data at the time of the interview and must depend 

on data from other districts to derive this information. 

• Diversion plan is an important issue to District 1. During the lane closure, the Florida 

Highway Patrol (FHP) may need to know when and where to divert people. This 

could also be used as a basis to optimize signal timing plans during diversion.  

2.2.2.  FDOT District 2 

A web-based meeting was conducted with FDOT District 2 ITS staff. The following is a 

summary of the results of the discussion. 
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• The most important focus area for District 2 is device maintenance, followed by 

incident detection and situation assessment, followed by accurate and reliable travel 

time estimation and optimization of ITS resources. 

• Travel time estimation is fairly accurate in Jacksonville. Investigating the accuracy of 

travel time estimation may be important to other districts that have more complex 

networks, but not for FDOT District 2. 

• Predicting the impacts of weather on travel time is important. FDOT District 2 tracks 

the weather and makes decisions regarding displaying dynamic message sign (DMS) 

messages based on this.  

• Important topics in the area of incident detection and effectiveness of ITS devices 

include: 

o Comparison between the detector-based incident detection algorithms and other 

detection sources such as phone calls, CCTV cameras, etc. 

o Improvements to incident detection algorithms. 

o The benefits of CCTV cameras. 

• Device maintenance is ranked the highest focus area by District 2. This is because 

optimizing and analyzing device maintenance is considered to be critical especially 

for future funding arrangements. 

• For Situation assessment: 

o Displaying queue lengths is useful and should be compared with time of day 

“historical” data to generate responses. FDOT District 2 has a three-phase 

response plan, depending on the travel time and queue length. 

• Optimization of Road Ranger: 

o The optimization of Road Ranger could be helpful and should depend on time of 

day. 

• Other potential areas of research mentioned by FDOT District 2 include: 

o Incorporation of partner agency data (for example, data from FHP, fire and 

rescue, etc.) into SunGuide operations. 

o Performance measurements for ITS.  
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2.2.3.  FDOT District 4 

Meetings were held with the FDOT District 4 ITS Program Manager and the TMC 

Operation Manager. The following is a summary of the issues identified as high priority issues 

based on the interview: 

• Travel time estimation 

o The most important issue identified by FDOT District 4 is the reliability of travel 

time estimation under different conditions; travel time may be accurate on 

average, but how reliable are the estimates under different conditions? 

o What is the increase in estimation error as the segment length increases under 

different congestion levels?  

o There may be a need to use a factor to increase the estimated travel time during 

the peak period based on time of day, since there may be an underestimation of 

travel time in the peak periods.  

o At the time of the interview, there was a rounding error effect in the SunGuide 

software (60 mph yields much lower travel time than 59 mph). This needed to be 

corrected.  

o There is a need to investigate the effect of the averaging of detector data from 

different lanes on travel time estimation. 

o Also, there is a need to estimate the effect of the averaging of travel time based on 

measurements from previous time steps under different conditions. 

• Incident detection and effectiveness of ITS devices 

o FDOT District 4 does not rely on traffic detectors in their incident detection and 

thus it does not consider improving incident detection based on detectors as a high 

priority. 

• Effectiveness of ITS devices 

o There is an interest in knowing how people are actually using both the incident 

information and the travel time information under incident and no-incident 

conditions.  
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o There is an interest in knowing the effect of different ITS components (CCTV 

cameras, VisioPad, service patrol, etc.) on the system performance to prioritize 

and justify investments in ITS.   

• Situation analysis 

o There is a need to provide alerts of erroneous and missing data due to detector 

malfunctions and configuration problems. SunGuide configures field devices 

separate from the field so the detectors may not be synchronized with the 

SunGuide software. This may have significant effects. 

o There is a need for a better visualization of real-time and historical detector data 

such as queue length. There is a need to use different speed thresholds to indicate 

congestion for different times of the day. 

o Reliability of the transportation system in real-time could also be an interesting 

area of research. 

o A real-time gauge of system performance is an interesting area as well. 

2.2.4.  FDOT District 6  

A meeting was held with FDOT District 6 ITS staff. The following is a summary of the 

results of the discussion:  

• FDOT District 6 identified incident detection and travel time estimation as the highest 

priority topics.  

• Travel time estimation: There is a need for research to improve the methods and 

parameters of travel time estimation. 

• Incident detection: Some of the areas of interest related to incident detection are  

o Comparing the effectiveness of different detection algorithms and optimizing the 

parameters of the algorithms,  

o Testing to determine if the detection can be improved by adding more detectors, 

and 

o Allowing the incident detection threshold to vary by season and/or to be different 

in weekdays vs. weekends (In the Sunguide software, the incident detection 

threshold is only a function of time of day, occupancy, and speed). 
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• Effectiveness of ITS devices 

o There is an interest in comparing incident detection based on the different 

detection sources such as VisioPad, detectors, and other sources. 

o Optimization of service patrol resources is an area in which research is needed. 

• Situation Analysis 

o In the current Sunguide software, when a threshold is exceeded, the map color 

turns to red from green. However, the map does not show the speed, occupancy, 

and queue length. More details and better graphics are needed to allow the 

operator to make better decisions. 

o A display of the expected-versus-current delay and queue length is of interest. 

o A better definition of incident severity levels may be needed. 

o The identification and correcting of detector malfunctions is important. 

• Route diversion 

o FDOT District 6 is interested in route diversion, especially the diversion with 

signal optimization on the alternative arterials, but to a lesser extent than travel 

time estimation, incident detection, and situation analysis. It is suggested that this 

can be done using simulation as part of a separate effort. 

• Maintenance of devices: Topics of interest in this area include comparison of the 

number of days required to maintain the different types of devices.  

2.2.5.  FDOT District 7 

A web-based meeting was conducted with FDOT District 7 ITS Program Manager and 

the ITS Operations Manager in District 7. The following is a summary of the discussion:  

• FDOT District 7 believes that the travel time estimation by the SunGuide software is 

currently accurate in the Tampa Bay area and there is no need for further 

investigation. 

• FDOT District 7 believes that the only way to improve the incident detection and 

response processes is to increase the number of cameras.  

• Better display of queue length on the map could be useful. 

• Other areas discussed are not important to FDOT District 7. 
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2.2.6.  Florida Turnpike Enterprise 

A meeting was conducted with the Traffic Operations Engineer of the Florida Turnpike 

Enterprise. Below is a summary of the results of the discussion:  

• The focus areas of highest priority are travel time estimation and service patrol 

optimization.  

• Some of the issues related to travel time estimation discussed in this meeting and 

considered to be important are listed below. 

o The accuracy of travel time during incidents: This could be challenging since the 

number of blocked lanes are dynamically changing during incidents. 

o Estimation of the effect of lane closures due to construction on travel time 

estimation: This could increase the accuracy of travel time during these 

conditions. 

o The effect of weather on travel time. 

o Comparison of probe detection (Automatic Vehicle Identification (AVI)-based 

detection) and point detection in estimating travel time. 

o The impact of spacing of detectors and spacing of AVI on travel time estimation. 

o Investigating the provision of the upper end of the range versus provision of the 

range to travelers. The current implementation of the range in SunGuide is based 

on the mean value of travel time with the range increasing as the mean of travel 

time increases. 

o Determining if the difference between lanes should be considered when 

calculating the range. 

• Service patrol optimization: This is of particular importance considering budgetary 

cuts.  

• Following travel time estimation and service patrol optimization in importance are 

incident detection and situation recognition. Topics of interest in incident detection 

and situation recognition include: 

o Comparison of different detection techniques (CCTV, VisioPad, FHP 

notifications, service patrol detections, etc.). FDOT District 4 showed that certain 
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percentages of incidents are first detected by VisioPad. The importance of this 

must be quantified. 

o Revision of incident severity levels. Current levels do not consider whether the 

closed facility is a ramp or a mainline. These levels do not consider the expected 

duration of blockage and time of day. It may be possible to relate DMS messages 

to new, improved severity categories.  

2.2.7.  FDOT Central Office  

An interview was conducted with the FDOT Central Office ITS staff in Tallahassee, FL. 

Below is a summary of the results of the interview:  

• Travel time estimation and many of the topics discussed in the interview regarding 

travel time estimation are important focus areas of this project, including those in the 

following list. At this stage, short-term future prediction of travel time is not as 

important as accurate and reliable estimation of the instantaneous travel time. Once 

accurate and reliable estimation is achieved, then prediction can be investigated in a 

future effort, if needed. Important research topics include: 

o The effect of detector malfunctions and data errors and the threshold of detector 

failures beyond which not to display travel time; 

o Whether a single value or a range of travel time should be disseminated to 

motorists, and the method of deciding the range to display; 

o The method of setting the minimum and maximum values required as inputs to 

SunGuide; 

o Frequency of time message generation; 

o Estimating the speed during very low volume (for free-flow speed) and for 

congested traffic conditions; and 

o The effect of detector locations and frequency on travel time estimation.  

• Incident detection: 

o There is no need for an in-depth comparison of different incident detection 

algorithms since the incremental benefits may be small and the traffic detectors 

may not be the main source of detection, given that many other sources exist. 
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o Comparing the performance of VisioPad with detector-based incident detection 

algorithms is of interest. 

• Situation analysis:  

o Showing queue length and other measures on the map; and  

o Better definition of the level of incident severity.  

• Route diversion: This area should not be a high priority for this project, particularly 

considering the difficulty in conducting route diversion in real-time. 

2.3. Ranking of Focus Areas 

Based on the results presented in the previous section, it was possible to rank the research 

issues by priority. This ranking is presented in Table 2-1. 
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TABLE 2-1 Ranking of Focus Area based on Project Stakeholder Inputs 
Area Rank Justification 

Travel time estimation 

accuracy and reliability under 

different influencing factors 

1 This area has been identified as having the highest 

priority by FDOT Districts 1, 4, 6, Turnpike 

Enterprise, and the Central Office.  

Detection of detector 

malfunctions, configuration 

problems, and data errors  

1 This is a basic area that is important to all decision 

support tools based on detector data, and is accorded 

high importance by the stakeholders. 

Situation recognition and 

performance measurement and 

prediction  

2 Better real-time indicators and visualization of 

network performance based on collected data and 

better incident severity categorization have been 

ranked as high priorities by all stakeholders, 

Effectiveness of  incident 

notification methods 

3 Most stakeholders indicated that comparing CCTV 

cameras, detectors, FHP calls, VisioPad, service 

patrols, and other detection devices would be useful.   

Optimization of service patrol 

operations 

4 Most districts considered this as a high priority, 

particularly given the recent cut in the funding.   

Investigation of the use of 

disseminated information by 

travelers 

5 Comparing the benefits of incident and travel time 

information dissemination under different 

conditions. 

Device maintenance 6 This area was ranked highest by District 2 and was 

of interest to some other districts.  Some districts 

have said that they are already developing their own 

tools for this purpose.  Others said that it will take 

some time to collect enough data to support the 

development and use of such tools.  

Algorithms and parameters of 

incident detection based on 

traffic detector data 

7 This area was ranked high by Districts 1, 2, and 6, 

and low by Districts 4 and the Central Office. 

Rout diversion 8 This area was important area of research to Districts 

1 and 6. 
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2.4. Conclusions 

Based on the discussion of this chapter, the following areas of research are recommended 

for the “Decision Support Tools to Support the Operations of Traffic Management Centers 

(TMC)” project:  

1. Accuracy and reliability of travel time estimation including the following issues: 

a. Effects of incident conditions on travel time estimation 

b. Investigation of the impact of the selected range of travel time on travel time 

reliability 

c. Investigation of the impacts of the frequency of generating travel time messages 

d. Effect of the travel time link length 

e. Effect of temporal averaging and smoothing method and interval 

2. Detection of detector problems and data errors and the impacts of data filling, cleaning, 

and correction methods on travel time estimation 

3. Situation recognition and impact analysis including: 

a. Estimation of incident impacts  

b. Estimation of incident duration based on incident attributes 

c. Estimation the potential for secondary incidents based on incident attributes 

d. Estimation of congestion level 

e. Estimation of queue length for on-line and off-line applications 

f.  Better estimation of the incident detection time by identifying the time lag between 

the occurrence of the incident and the time it is entered in the database 

g. Estimation of diversion rates 

The followings are areas of research that are recommended as future research efforts: 

a) Travel time prediction for a short-term in the future based on current travel time 

data. 

b) Performance measurements, prediction and visualization of the transportation 

systems  

c) Tools for analysis and optimization of ITS device maintenance. 
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d) Methods to optimize route diversion and alternative route operations including 

optimizing signal timing in conjunction with route diversion.  

e) Tools to maximize the use of partner agency data such as FHP data, fire rescue, 

county, transit, and other agencies. 

f) Effectiveness of incident notification/detection methods 

g) Comparison of the effectiveness of various incident detection sources.  

h) Tools to optimize service patrol operations. 
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3. Travel Time Estimation 

3.1. Introduction  

Accurate and reliable estimation of freeway travel time based on point detector 

measurements is needed to support advanced traveler information systems (ATIS) and advanced 

traffic management systems (ATMS). Transportation agencies (including Florida districts) are 

increasingly posting travel time information on their dynamic message signs (DMS), traveler 

information telephone services (511), web sites, and other ATIS devices. Transportation agencies 

also use this information to support better traffic management. 

Existing travel time estimation methods based on point traffic detectors can generally be 

classified into speed-based methods, traffic flow theory-based methods, and statistics-based 

methods. The speed-based methods (also referred to as the extrapolation methods or trajectory-

based methods) construct the trajectory of speed along a roadway based on point measurements 

of speed by traffic detectors and use this information to estimate the travel times. Different 

assumptions regarding the speed trajectory lead to different speed-based methods. Examples of 

these methods include the Point-to-Point method, Mid-Point method, Average Speed method, 

Minimum Speed method, the Minnesota Algorithm (Kothuri et al. 2007), Piece-wise Linear 

Speed Based Model (Van Lint 2004), Piece-wise Constant Acceleration Based Model (Shen 

2008), and Truncated Quadratic Speed Trajectory method (Sun et al. 2008). A brief description 

of these existing speed-based estimation methods can be found in Appendix A. 

On the other hand, the traffic flow theory-based methods use volume and/or occupancy 

measurements as input variables to estimate travel time instead of using speed measurements. 

The cumulative curve method (also referred as traffic dynamic approach) and the shock wave 

analysis method are two examples of previously proposed traffic flow theory approaches. The 

cumulative curve methods are based on estimating the time spent on a segment by comparing the 

cumulative traffic entering and exiting the segment at frequent time intervals. The cumulative 

curve methods were first developed by Nam and Drew (1996, 1999) for normal and congested 

conditions. Various improvements were made to these models later (Vanajakshi 2004, Zhang 

2006). Vanajakshi (2009) further proved that the two cumulative curve equations previously 

developed for normal and congested conditions can be unified to be one equation. The shock 
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wave methods provide estimates of shock wave speed and thus allow estimating the queue 

lengths during lane closure and incident conditions. When applying shockwave methods to travel 

time estimation, the travel time of the vehicles within the queue depends on the queue discharge 

rate at the bottleneck location, while the travel time for the vehicles outside of the queue is 

estimated based on the measured flow and occupancy (Dhulipala 2002).  

The statistics-based methods attempt to relate the freeway travel time with traffic flow 

parameters such as the traffic counts at upstream and downstream detector locations or the 

accumulated flows within the segments. The methods range from simple regression analyses 

(Petty et al. 1998) and cross correlation analyses, to more complicated probabilistic regression 

models (Petty et al. 1998; Zhang et al. 1999; Guo and Jin 2006). The probabilistic regression 

model proposed by Petty et al. (1998) considers the average travel time along the link as a 

random variable, whose probability density function is assumed to be the same as the arrivals at 

the upstream detector location. A regression analysis over the upstream and downstream flow 

measures during a given estimation window is used to determine this probability density 

function. Later extensions of this method include using the B-splines, exponential moving 

(Zhang et al. 1999), and correlation analysis (Guo and Jin 2006) to improve the estimation of the 

probability density function. 

Currently, most traffic management centers use simple speed-based approaches for travel 

time estimation. For example, the TMCs in Portland, Oregon use the Mid-Point method for 

travel time estimation, while the TMCs in San Antonio, Texas, apply the Minimum Speed 

method (Kothuri et al. 2007). SunGuide used in Florida allows the users to specify the limits of 

the travel time link associated with each detection station. Thus, the user can select the links to 

correspond to the Point-to-Point, Mid-Point methods, or somewhere in between these methods, if 

they choose to. Although the speed-based methods may produce acceptable results at lower 

levels of congestion, there have been questions regarding their abilities to produce accurate and 

reliable estimates of travel times under recurrent and non-recurrent congested conditions (Li et 

al. 2006; Kury 2008; Kothuri et al. 2008). This is because many detection technologies are not 

able to measure speed accurately under congested traffic conditions. In addition, the speed 

measurements made at point locations may not reflect the speeds along the segment that they are 

supposed to represent. On the other hand, some but not all traffic flow theory-based methods rely 

on assumed average effective vehicle lengths for density calculations and/or assumed constant 
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queue discharge rates at the bottleneck locations, which reduce the accuracy of the estimation 

(Dhulipala 2002). In addition, using traffic volumes and occupancies to estimate speeds may not 

be appropriate for uncongested conditions since the speed is not sensitive to traffic demand under 

these conditions (Vanajakshi 2004). Statistics-based methods such as the probabilistic regression 

are proven to be robust during congested conditions (Guo 2006). However, such methods usually 

use a data sampling interval of 1-second, which is not commonly available in practice, where 

traffic detector data are commonly polled at 20-second or 30-second frequency in current traffic 

management applications.  

Since different methods perform differently under different traffic conditions, instead of 

using one simple method, researchers are exploring the development of hybrid approaches to 

estimate freeway travel time. Vanajakshi (2004, 2009) applied an extrapolation method for very 

low volume conditions and a traffic flow approach for the remaining situations. The cut-off 

threshold used to switch between the two methods is 500 veh/hr/lane, which is arbitrarily 

selected and seems to be a very low value. Further, using the volume as the threshold may not be 

appropriate as one given flow rate may correspond to two different conditions, one is 

uncongested conditions and another one is congested conditions. In addition, this study only 

investigated the travel time along a very short distance (about 1.9 miles).  

 Dhulipala (2002) used the shock wave method to estimate travel times under lane-

closure and incident conditions, and a Mid-Point method based on flow and density instead of 

speed for non-incident and non-closure conditions. When using the Mid-Point method, the 

estimates were increased by 20% when the density at the downstream detector was greater than 

60 veh/mile/lane and the density at the upstream detector was less than 60 veh/mile/lane, with 

the purpose of capturing the existence of a compression wave. Similarly, a factor of 40% was 

applied to the results of the Mid-Point method when both the densities at the upstream and 

downstream detectors were greater than 60 veh/mile/lane. These two factors were approximated 

from the relationship between speed and density measurements. In another study, Xia and Chen 

(2007) first estimated travel time based on traffic parameters such as flow rate and occupancy 

measurements, and then adjusted the segment travel time using the shock wave method for 

incidents with significant impacts. However, this method requires incident starting time and 

estimates of the initial queue length based on detector measurements.  
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The above literature review indicates that the hybrid travel time estimation approach has 

been proposed as an effective method to estimate travel time under different congestion level but 

has not been adequately explored and compared with existing methods. This project tasks 

includes developing and assessing hybrid models to estimate the freeway travel time during non-

congested conditions, recurrent congestion, and incident conditions. The investigated hybrid 

models will include implementing combinations of speed-based methods and traffic flow theory-

based methods, and switching between the implemented methods based on the congestion levels. 

The performances of the developed models in terms of accuracy as well as reliability are 

quantified and compared in this study.  

3.2. Methodology 

This section includes a detailed discussion of the freeway travel time estimation 

methodologies developed and investigated in this study. This includes data acquisition and 

preprocessing, traffic condition identification, and travel time estimation models. 

3.2.1.  Data Acquisition and Preprocessing 

The traffic data used in this study is collected using point detectors (true-presence 

microwave detectors), which measure the values of speed, traffic count, and occupancy at small 

time intervals (e.g., every 20 seconds). The detector data is archived by the freeway traffic 

management software used at the traffic management centers of FDOT in TSS files that contain 

one record for each lane of each detection station for every 20-second polling interval, as 

explained in Chapter 1 of this report.  

The requirement analysis, presented in Chapter 2, indicates that the identification and 

consideration of erroneous detector data is an important issue that needs to be addressed. 

Detector data of good quality is a prerequisite for accurate and reliable travel time estimation.  

However, current detector data usually include erroneous or missing measurements. In addition, 

there is a need for aggregating and smoothing the measurements in an optimal manner for 

different applications. Thus, data preprocessing procedures are required. These procedures 

include data filtering, temporal and spatial data aggregation, and data imputation as described 

below. 
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Data Filtering 

 

Limited filtering is implemented to identify problems with real-time traffic detector data 

in SunGuide. In this study, the use of additional filtering is investigated.  A rule-based test is 

applied first to identify erroneous detector data. The rules are set based on an examination of the 

types of errors commonly found in the detector data archived by the SunGuide software. The 

rule-based test includes the following steps (the detailed tests are presented in Appendix A): 

• Identify duplicate data records such as the same records repeated more than once; two 

records with the same timestamp and lane identification (ID) but with different 

measurement (speed, volume count, and occupancy values); or data with the same 

lane ID and same measurements but with a polling interval less than 20 seconds. 

• A univariate test of data measurements aggregated at the 20-sec aggregation level to 

check whether the values of individual traffic parameters exceed predefined minimum 

or maximum thresholds. 

• A multivariate test of data measurements aggregated at the 20-sec aggregation level 

to check for unreasonable combinations of traffic parameter values such as a 

combination of zero speed, zero occupancy, and non-zero volume values. 

• A temporal variability check to test for constant values of speed, volume, and 

occupancy for a long period of time, including all zeros. 

• Multivariate tests for the average effective vehicle length and maximum density at the 

used aggregation level in the estimation of travel time. Aggregation at the used level 

is important for this test since testing at the 20-sec level may not guarantee that the 

test results are valid at the aggregated level.   

 

Data Smoothing 

 

The filtered 20-sec lane-by-lane detector data needs to be smoothed to reduce the impacts 

of noise in the detection data. Two smoothing methods are tested in this study: the simple 

moving average method used in SunGuide and the exponential moving average method. The 

simple moving average method is the average of previous m data points, where m is specified by 

the rolling period. The mathematical expression for the simple moving average method is:  
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where Xi represents the raw ith measurement while Yt is the smoothed traffic parameter at the t 

timestamp.  

The second type of smoothing, the exponential moving average method, is described in 

Equation 3-2.  

                                                     1)1( −−+= ttt YXY αα                                  (3-2) 

The symbol α in this equation refers to a smoothing factor selected by the user. Since detectors 

may have incidental or structural failures, the time interval between two acceptable neighboring 

records may not be consistent, and therefore a time-dependent smoothing factor is used instead 

of a constant value. The expression for α is shown in Equation 3-3 below: 

                                                     τα /1 te ∆−−=                                  (3-3) 

where ∆t is the time interval between two consecutive records. τ is a time constant, estimated 

based on the commonly used value of 0.4 for α (Shen 2008) for a time interval of 20 seconds 

between detector data measurements. Once the data is smoothed as described above, the lane 

data is further aggregated to the station level for use in travel time estimation.  

 

Data Imputation 

 

In the SunGuide software, the measured lane-based speed data is smoothed by a simple 

moving average method and then capped by the speed limit to avoid reporting short travel time 

that may encourage speeding. The lane-based data is further aggregated to the station-level and 

used for travel time estimation. In cases of detector failures (when a speed measurement is not 

reported by the detection system, the missing speed data is replaced by neighboring data 

(Dellenback and Heller 2006). This method first attempts to use a neighboring lane measurement 

and if this is not available it uses a neighboring station measurement.  

 

In this study, additional spatial and temporal data imputation procedures are investigated 

to substitute for the missing or erroneous data identified in the data filtering step. The spatial 

imputation employs the neighboring detector information to impute the missing values while the 
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temporal imputation uses the historical information of the same detector to replace the missing 

values. In this study, the spatial data imputation procedure is conducted at two levels: within the 

same detector station and between the stations. For the same detector station, if only part of the 

lanes have missing or erroneous speed measurements, the missing values are filled with the 

average of the speeds measured using detectors on adjacent lanes with available speed 

measurements. When the whole station data is missing, between stations imputation approach is 

used. Initially, three types of methods for between-station imputations were considered in this 

study: simple average, linear interpolation, and factor method.  

The simple average uses the average of measurements from neighboring stations to 

estimate the missing values, as shown in Equation 3-4.  

                                                     )(
2
1

,3,1,2 ttt YYY +=                                  (3-4) 

where Y can be speed, volume count, or occupancy. Y2,t is the estimated value for missing data at 

timestamp t.  Y1,t and Y3,t are the measurements at neighboring stations, as shown in Figure 3-1. 

 

 

 

 

 

FIGURE 3-1 Sketch Diagram for Spatial Imputation 

The linear interpolation method assumes linear spatial variation of traffic parameters. Thus, the 

missing data can be estimated as:  
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where L denotes the distance between neighboring stations.  For the factor method, the factor is 

defined as the ratio of current station traffic data to the upstream or downstream values, as 

described below: 
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 where Fi,j,t represents a factor between station i data and its neighboring station j at time of day t.  

The station j can be either the upstream station or downstream station.  p is the total number of 

days available.  The missing value is then estimated as: 

                                                     ttttt YFYFY ,3,3,2,1,1,2,2 +=                                  (3-7) 

In this study, the exponential moving average method is applied for temporal imputation, 

as the future detector data are not available for on-line applications.  The missing value is 

replaced by the forecasted value based on the exponential moving average.  The corresponding 

expression is as follows:  

                                                       1,21,2,2,2 )1( −− −+== tttt fYfY αα                                  (3-8) 

where f represents the forecasted values. Note that the formulation in Equation 3-8 is similar to 

that in Equation 3-2. However, the values in the previous time period are used to impute the 

missing data at the current time period. Based on previous studies (Van Lint 2005; Shen 2008), 

the value of the smoothing factor α is set to 0.4.  

3.2.2. Congestion Level Identification 

As mentioned earlier, the hybrid approaches investigated in this study to estimate travel 

time uses combinations of methods and switch between these methods depending on the 

congestion levels. A key point for the success of this approach is to identify the roadway 

conditions and determine the time at which traffic congestion occurs. In addition, in the case of 

traffic congestion that involves queuing, the methodology requires the determination of whether 

a traffic queue is forming or dissipating.  In addition for use in travel time analysis, the 

identification of congestion level is an important consideration in situation analysis and 

performance measurements. 

Previous studies used predefined speed thresholds (for example, 35 mph or 50 mph) or 

predefined occupancy thresholds to identify the congestion (Chan 2003; Ban and Benouar 2007; 

Yeon and Ko 2007; Zhang and Levinson 2004).  Kaneko et al. (1995) recommended using all 

three traffic parameters: speed, volume, and occupancy to identify traffic status. In this study, the 

k-means clustering algorithm is used to classify the traffic states at each detection station to 

different clusters based on historical measurements of all three traffic parameters. Note that in 

the clustering analysis, the measurements are normalized using the z-score method to account for 
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the different scales in the three traffic parameters, and the Euclidean Distance is used to quantify 

the dissimilarity between two data points. Based on the literature review, the number of clusters 

is selected to be four in this study. These four clusters are associated with different congestion 

levels in the fundamental traffic flow theory diagram. When applying the proposed method to 

estimate travel times in real-time, traffic measures at each detection station are associated with 

one of the predetermined clusters (congestion levels) for the detection station based on its 

distances from each cluster centroid, as reflected by the Euclidean Distance.  

Figure 3-2 presents an example of the clustering results for a detector station, DS-1507E, 

located on SR 826 eastbound in Miami-Dade County, Florida, based on the traffic detector data 

from December 1, 2008 to December 31, 2008. The four cross symbols in these figures denotes 

the locations of the cluster centroids. As shown in Figure 3-2, the traffic states are separated into 

four clusters. Cluster I corresponds to close to free-flow conditions and the average speed is 

almost constant at the free flow speed regardless of the demand. Traffic cluster II is still 

uncongested but with a reduced speed. Cluster III is a more congested region, where the speed 

drops but to a lesser degree than the points in cluster IV. Cluster IV corresponds to extremely 

congested conditions, with low speed and low constrained flows. It was decided to use four 

clusters instead of just two corresponding to the congested and uncongested regions to allow 

more flexibility in combining or separating any two of the clusters based on the results of the 

analysis. 
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FIGURE 3-2 Clustering Results for a Detection Station on SR 826 
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FIGURE 3-2 Clustering Results for Detection Station SR 826 (Con’t) 

 

3.2.3. Queue Length Estimation 

This study requires the estimation of queue length when using the travel time estimation 

method that is based on traffic flow theory. In addition, as mentioned in Chapter 2 of this study, 

the queue length estimation is an important measure for situation recognition and performance 

analysis. This section discusses how the queue length is estimated in this study based on detector 

data. 

 

Based on the identified traffic congestion states at the upstream and downstream detector 

stations (see Section 3.2.2), each roadway link can be identified as one of four states: a head of a 

queue, a tail of a queue, in queue, or outside a queue. For an identified head of a queue link, the 

traffic state at the upstream station is determined to be congested, that is, in cluster III or IV, and 

the traffic states at the first and second downstream stations are in cluster I or II. The 

consideration of the second downstream station in addition to the first is to avoid a situation 
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where a temporary traffic state change in the first downstream station can result in a sudden 

change in the calculated queue length value. On the other hand, if both the two upstream stations 

are uncongested, that is, in the region of cluster I or II, and the downstream station is in the 

cluster III or IV, the link is categorized as a tail of a queue. The links between a head of a queue 

link and a tail of a queue link are identified as in-queue links, and the remaining links are 

identified as outside of queue links. 

Once the head and the tail of a given queue are identified, the queue length can be 

estimated. In addition, as another important parameter to the methodology, the queue status 

(growing, dissipating, or stationary), can be determined by comparing the current locations of the 

head and tail of the queue with those at previous timestamps. Figure 3-3 presents one example of 

queue identification for the SR 826 limited access facility in the eastbound direction. As shown 

in this figure, the queue starts from the link located between station DS-1533E and DS-1535E at 

time 7:08 A.M. and extends to the first upstream link due to an incident at DS-1533E. The queue 

length starts to decrease at time 8:16 A.M. and completely dissipates at 8:48 A.M.  

 

 
 

FIGURE 3-3 Example of Queue Identification Results  

3.2.4. On-Line Travel Time Estimation 

Travel time is estimated in this study using different methods for on-line (based on real-

time data) and off-line (based on historical data) applications. As clarified later in this chapter, 

additional information is available in the case of off-line applications, allowing more accurate 
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estimation of travel time. This section describes the on-line travel time estimation methods 

investigated in this study.  

As mentioned earlier, the hybrid approaches developed in this study apply different 

methods to estimate travel time based on the identified congestion level and queue location. Two 

on-line hybrid travel time estimation models are developed. The first (referred to as On-Line 

Hybrid Model 1) combines a speed-based method with a traffic flow theory-based method. The 

second (referred to as On-Line Hybrid Model 2) combines two different speed-based methods. 

Below is a description of these hybrid models. The two hybrid models were compared with 

various speed-based methods and traffic flow methods and the results are reported later in this 

chapter.  

On-Line Hybrid Model 1 

The rationale behind Model 1 is that previous studies have reported that speed-based 

travel time estimation methods work well under free-flow conditions, while travel time 

estimation methods based on traffic flow theory work well under congested conditions. Thus, the 

combination of these two estimation methods has the potential of producing a better 

performance. Model 1 uses a speed-based method to estimate travel times for non-congested 

segments and a traffic flow theory-based method for congested segments.   

The speed-based method selected for use is the Mid-Point method, since it is widely used 

in practice and was shown in this study to perform well for uncongested conditions, as described 

later. This method estimates the travel time along uncongested links as follows. 

                                                       
ti

i

ti

i
ti S

L
S
L

TT
,2,,1,

, 22
+=                                  (3-9) 

where TTi,t is the estimated travel time for link i at time t. Li denotes the length of the link that 

connects upstream and downstream detector station, and Si,1,t and Si,2,t are the speeds at the 

detection stations upstream and downstream of the link, respectively.  

The travel time for a congested (fully queued) link is estimated using a traffic flow 

theory-based method that is based in the relationship between the three macroscopic traffic 

variables (speed, flow, and density), as follows:  
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where qi,2,t is the flow rate at downstream station of the link i at time t. The ki in this equation is 

the link density, which is calculated as the average of the densities at the immediate upstream 

and downstream stations. It should be mentioned that the density k in above equations is 

estimated from the measured occupancy and the average effective vehicle length estimated by 

using the measured values of speed, volume count, and occupancy when the traffic is free-flow, 

that is,  
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where Leff,j is the average effective vehicle length at detector station j. N is the total number of 

lanes at the detector station. m is the total number of detector records with a free-flow traffic 

condition within the same peak period.  

When the link is located at the head of the queue, it may be identified as partially queued 

(when the queue is identified upstream of the link but not downstream of the link). Therefore, the 

travel time estimation for a head of queue link consists of two parts: one for the queued section 

and one for the unqueued section, as shown below. 
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where Li,1 is the length of queue section within the link, while Li,2 is the remaining uncongested 

section. Similar expression can be used for the travel time estimation of a tail of a queue link 

since such a link can be partially queued also. 

While testing the above model, it was determined that the fast change in the queuing 

status during lane blockage incident conditions requires two refinements to the above model. The 

refined model is referred to as the Refined On-Line Model 1. The first refinement is to predict 

the queue length during the queue forming stage to account for the lag between the times the 

vehicles receive the information (e.g., at a DMS location) and the times they arrive at the tail of 

the queue. The predicted queue length is calculated based on the current location of the vehicle, 

current ending location of the queue and the propagation of the backward forming shock wave. 

This propagation speed is calculated as follows:    
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where ωb denotes the shock wave speed. q2 and q1 are the flow rates within the queue and at the 

upstream of the queue, respectively. k2 and k1 are the corresponding densities. In this study, q2 

and k2 are approximated by the flow and density at the downstream station of tail of the queue, 

while q1 and k1 are the traffic parameters at the upstream station of this link. The speed within 

the queued section is estimated as the average speed of all of the detector stations within the 

queue. This speed is calculated as a function of flow and density.  

The second refinement to the model considers a front recovery shock wave few minutes 

before the time at which the incident is forecasted to be cleared. This refinement can be applied 

only when such forecasting is possible, for example, by an operator who is monitoring a real-

time video display of the incident scene and communicating with the incident management 

team1

                                                     

. This refinement is to account for vehicles that receive travel time information at the DMS 

locations, with the travel time calculated under the assumption that the front of the queue due to 

the incident at a given location is fixed at that location, but in fact, because the traffic is in the 

recovery stage after the lane blockage is cleared, the queue length is decreasing with the head of 

the queue moving upstream due to the fast moving backward recovery shockwave. If this 

reduction in queue is not considered then the travel time received by the affected vehicles at the 

DMS location will be an overestimated travel time. The refinement applied to address this issue 

includes the estimation of the recovery shock wave speed as follows:  
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where ωf represents the speed of the recovery shock wave. c1 is the capacity during the incident 

while c2 is the queue discharge rate during incident clearance. These two parameters can be 

estimated from the normal roadway capacity and the capacity reduction factor during the 

incidents. The capacity and capacity reduction can be estimated based on the Highway Capacity 

Manual (HCM) procedures and parameters, or estimated based on detector station data, if this is 

possible. Parameters k1 and k2 are the corresponding densities. The reduction in queue length due 

                                                 
1  The utilization of an incident duration prediction model was also considered but eliminated from further 

consideration due to the expected variation in the durations of incidents with similar attributes.   
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to the recovery shockwave is then calculated based on the vehicle starting location, the time that 

incident starts to clear, and the speed of recovery shock wave. The average speed, determined 

from the capacity c2 and the density k2, is used for those recovered roadway segments.     

It should be pointed out that at the finalizing stage of this project; it was found that 

similar to this study, Yi (2009) developed a travel time estimation framework by combining a 

speed-based method with a traffic-flow theory based method and a statistics-based method. 

However, Yi study (2009) is different from this study in that it requires 1-sec detector data and 

the knowledge of the timestamps when each vehicle enters and exits the detection zone. This 

study requires 20-sec detector data for speed, volume count and occupancy; which is the typical 

aggregation level of detector data of traffic management systems. Further, Yi (2009) only tested 

the algorithms for very short links with a length up to 3,300 feet which may not capture the 

impacts of queue propagation and did not test the algorithm during incident conditions. Finally, 

for on-line application, Yi study (2009) did not take the dynamics of queue into consideration.  

On-Line Hybrid Model 2 

Instead of combining a traffic flow method and a speed based method as is done in On-

Line Hybrid Model 1, Hybrid Model 2 combines two different speed-based methods: the Mid-

Point method and the Minimum Speed method. The rational is that there is a feeling among the 

FDOT ITS staff that the mid-point method underestimates travel time during congested 

conditions. Thus, using the minimum of the speeds measured at upstream and downstream 

detectors as is done in the minimum speed method may produce better results.  

The existence of the queue and its status, identified by clustering analysis as explained 

above, can be used with the On-Line Hybrid Model 2 to select the appropriate method for travel 

time estimation as follows: 

• If there is no queue identified along a path, the traffic is under non-congested 

conditions and the Mid-Point method is applied to estimate the travel time for these 

conditions. 

• When the queue exists and it is growing backward, the Minimum Speed method is 

selected for the travel time estimation to capture the dynamic growth of the queue. 

Since the Minimum Speed method uses the lower value of the upstream and 
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downstream station speeds to represent the average link speed, it implicitly considers 

the queue propagation to the upstream station. 

• If the queue is dissipating with a forward recovery shockwave, which occurs at the 

time when the recurrent congestion starts to dissipate at the bottleneck due to the 

reduction of upstream demands, the Minimum Speed method is also applied to 

account for the congestion considering that the recovery shockwaves in this case is 

slow and not as fast as the recovery shockwave in case of incident clearance, which is 

described next. 

• If the queue is dissipating with a backward recovery shockwave, such as in the case 

of incident clearance, the travel time estimation switches back to the Mid-Point 

method. This is because the fast moving recovery shockwave will result in a fast 

reduction in queue length and it is expected that there will be an overestimation if the 

Minimum Speed method is used in this case.  

Similar to Hybrid Model 1, a refinement is applied to Hybrid Model 2 by including in the 

calculation a front recovery shock wave that is used to account for the incident recovery 

conditions. The procedures to estimate the impact of the recovery shock wave speed on the 

length of the congested region is the same as that used in Model 1. However, Model 2 does not 

need to predict the queue length during the queue forming stage under incident conditions, as 

was done in the Refined Hybrid Model 1, since the Minimum Speed method seems to be able to 

account for the dynamic growing of queue.  

3.2.5. Off-Line Travel Time Estimation 

Although this study mainly focuses on the real-time (on-line) estimation of travel time; 

for comparison purposes and for potential use for off-line applications, corresponding hybrid off-

line estimation models that utilize historical data are also developed.  This is also useful since 

off-line estimates have been used used in the training process of real-time short-term travel time 

prediction methods such as Neural Network, Time Series, Regression, or Nearest Neighbor. 

The difference between on-line and off-line estimation methods is that for on-line 

applications, future traffic conditions along the paths of the vehicle are not available and only the 

instantaneous travel time (based on the traffic conditions at the time of the estimation) can be 

used in the estimation. For off-line estimation, the traffic conditions at later time periods are 
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known using the historical data. Thus, the actual travel time experienced by the vehicles can be 

estimated based on traffic conditions as the vehicle progresses in its route from one link to the 

next.   

The method used in this study divides the whole time duration into small time periods 

depending on the temporal aggregation level of the detector data, as shown in Figure 3-4.  

FIGURE 3-4 Schematic Diagram for Off-Line Travel Time Estimation 

 

As shown in the figure, a vehicle enters cell i at location x0 and time t0. The remaining 

time in this time period is compared to the time that is required to reach the downstream station, 

and the minimum value of these two is used in the travel time estimation for this cell. Depending 

on the location of exit point (x1, t1), the vehicle can either enter the next link during the same 

period, which is cell (i+1, t); stay on the same link but experience different traffic conditions at 

time t+1, which is cell (i, t+1); or enter the downstream link at the next period of time; which is 

cell (i+1, t+1). The resulted route travel time of a vehicle is the time that the vehicle arrives at the 

destination (last detection station on the path for which the travel time is estimated) minus the 

time that the vehicle departs the origin (first detection station on the path for which the travel 

time is estimated). This concept is similar to the concept presented by Van Lint (2004). 
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However, instead of using the Piece-wise Linear Speed method as was done in the study of Van 

Lint (2004), hybrid methods developed in this study are used to calculate the travel time within 

each cell. In parallel to the two on-line hybrid models mentioned above, two hybrid off-line 

models are also developed, which are explained below.  

Off-Line Hybrid Model 1 

Similar to the On-Line Hybrid Model 1, the travel time within each cell for the Off-Line Hybrid 

Model 1 are either estimated by the Mid-Point method or Flow-based method, depending on the 

congestion level identified by the clustering analysis, as described above. Given the entering 

location and time (x0, t0) at each cell, the exit location and time (x1, t1) can be written as 
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where xd indicates the downstream detector location for each cell. The symbol tp refers to the 

ending timestamp for the cell, which corresponds to the time of the next travel time update. t(xd) 

is the timestamp when reaching the downstream detector location and x(tp) is the location that 

can be reached by the vehicles at timestamp tp. The expressions for these two parameters vary 

with the congestion level in the cell. Below is the detailed discussion of how to calculate t(xd) 

and x(tp) under different conditions. 

In this case, the Mid-Point method is used for travel time estimation as it performs well 

under uncongested conditions. Since the Mid-Point method assumes that each detector speed 

measurement represents the speeds of half distance to the next detector on both sides, the travel 

time estimation in this case is divided into two parts, depending on whether the entering point of 

vehicles x0 is within the first half of the cell or the second half of the cell. 

Case 1: The cell is free of congestion. 

If the entering point of vehicles x0 is within the second half of the cell, that is,  
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where xu indicates the upstream detector locations. The corresponding timestamp when reaching 

the downstream detector location t(xd) is expressed as: 
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Meanwhile, the location x(tp) that can be reached by the vehicles at the timestamp tp is 
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In the case that the entering point of vehicles is within the first half of the cell, that is,  
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The expression for t(xd) is 
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The location x(tp) at the timestamp tp is written as 
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where t(xm) is the timestamp when the vehicles reach the mid-point of the cell, which is 

calculated as  
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When the status of the cell is in-queue, the flow-based method is applied to calculate t(xd) and 

x(tp), that is,  

Case 2: The cell is in-queue. 
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2
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where ku and kd are the densities at the upstream and downstream detector locations, respectively. 

qd represents the flow rate at the downstream detector location of this cell. 

Case 3: The cell is a head of a queue. 
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Similar to the on-line Hybrid Model 1, the head of queue cell consists of two parts, the one 

within the queue and an uncongested part downstream of the congestion. If the vehicles enter the 

cell in the uncongested part, the values of t(xd) and x(tp) are obtained from the downstream 

detector speed, that is, 
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However, if the vehicles enter the cell within the congested part, the corresponding expressions 

for t(xd) and x(tp) are 
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where xq is the ending location of the queue within the cell.  t(xq) is the timestamp when the 

vehicles reach the location of xq.  The vehicles may exit the cell either from the congested region 

or uncongested region, and thus two different expressions are formulated for x(tp) in Equation 3-

28. 

Contrary to the head of a queue case described above, the first part of a tail of a queue cell is 

uncongested while the second part of this cell is within the queue.  The method used for the 

estimation of travel time for a tail of queue cell follows the same idea as a head of queue cell. 

Case 4: The cell is a tail of a queue. 

If the entering location x0of a vehicles is within a congested region, the expressions for 

t(xd) and x(tp) are written as 
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Otherwise, the corresponding expressions are  

                                                    ddqd
u

q
d qkxx

S
xx

txt /)()(
0

0 ×−+
−

+=                         (3-31) 



Decision Support Tools to Support the Operations of TMCs 

37 

 

                             






>−×+
≤−×+−×+

=
pqpu

pqqpddqu
p txtttSx

txtxttkqtxtSx
tx

)()(
)())((/))((

)( 00

00

        (3-32) 

where xq is the starting location of the queue within the cell. t(xq) is the timestamp when the 

vehicles reach the location of xq.  

As mentioned above, the resulted route travel time of a vehicle is the time that the vehicle 

arrives at the destination (last detection station on the path for which the travel time is estimated) 

minus the time that the vehicle departs the origin (first detection station on the path for which the 

travel time is estimated).  

 Off-Line Hybrid Model 2 

The Off-Line Hybrid Model 2 utilizes the Mid-Point method for uncongested cells and 

the Minimum Speed method for the fully or partly congested cells. The combination of these two 

speed-based methods aims at utilizing the advantages of each individual estimation methods and 

thus improving the overall estimation performance.   

With the Off-Line Hybrid Model 1, the exit location and exit time (x1, t1) can be 

expressed as the function of entering location and and time (x0, t0) as in Equation 3-33.  
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For the uncongested cells, the expressions for t(xd) and x(tp) in the above equation are exactly the 

same as those described in Model 1 and are omitted here for brevity.  

The expressions of t(xd) and x(tp) for the fully congested or partly congested cells are 
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Note that since the traffic parameters at later time periods are known, the off-line hybrid 

models do not need the refinement as the on-line hybrid models. Compared to the previous travel 

time estimation studies, the hybrid off-line models developed in this study do not need additional 

information about incidents, such as the incident occurrence time and duration, since the 

clustering analysis described above will automatically detect the occurrence and disappearance 

of queue. 
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3.3. Model Assessment and Comparison 

The accuracy and reliability of travel time estimates obtained using various existing 

speed-based methods including the SunGuide algorithm for travel time calculation, a simple 

traffic flow-based method based on flow and occupancy, the modified N-D method (a traffic 

flow method), and the hybrid models described above, are evaluated and compared in this study. 

The comparisons are made using simulation models as well as real-world travel time data. The 

existing methods included in the comparison of this study are briefly described in Appendix B. 

Figure 3-5 shows the corridor used as a case study in the comparison. The study corridor 

is the eastbound section of State Road 826, located in Miami-Dade County, Florida, starting 

from the location of detector DS-1509E to the location of detector DS-1549E. It includes six 

interchanges with a total length of about 6.48 miles. As shown in Figure 3-5, there are 21 true 

presence microwave detector stations deployed along this section with an average spacing of 

about 0.3 to 0.5 miles. However, it is found that detector station DS-1513E reported erroneous 

data for the period of the study, and therefore this station is excluded from analysis.   

 

 

FIGURE 3-5 Study Corridor and Detector Locations  

Two performance measures are used to quantify the accuracy of the estimated travel 

times. These performance measures are the mean absolute error (MAE) and the mean absolute 

percentage error (MAPE). These two performance measures are defined as follows: 
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where TTt is the estimated travel time at time t, and TTt,a is the corresponding real-world or 

simulated travel time (depending on the source of ground truth data). N is the total number of 

estimates. 

Because FDOT districts generally post ranges of travel time values rather than fixed 

travel time values on their traveler information devices, it is necessary to quantify the reliability 

of the estimated travel times, as well. In this study, the reliability of the travel time estimates is 

defined as the percentage of vehicles with travel times that are within the range of the travel time 

posted on the traveler information devices. In addition, the percentage of vehicles with travel 

times that are less than the posted minimum travel time as well as the percentage of vehicles with 

travel time greater than the posted maximum travel time is also reported. This study calculates 

the travel time ranges, using the same method used by the traffic management centers in South 

Florida in their real-world operations (Florida Department of Transportation District 6, 2010). 

With this calculation, if the estimated travel time is less than five minutes, the traveler 

information message to travelers is “Under 5 Minutes.” If the travel time is more than 35 

minutes, the message is “Over 35 Minutes.” A 3-minute range is used when the estimated travel 

time is between 5 minutes and 10 minutes, and a 5-minute range is used for travel times between 

10 minutes and 35 minutes. 

3.3.1. Assessment Based on Simulation Data  

First, different travel time estimation methods were tested using a simulation model that 

is calibrated for incident and no-incident conditions. The utilized simulation tool is the CORSIM 

microscopic simulation model. As part of a separate FDOT Research project, the researchers of 

this study developed new procedures for the development and calibration of simulation models 

using data collected from ITS (Hadi et al. 2010). These procedures were used in this study. The 

details of these procedures are presented in the final report of the research project mentioned 

above and will not be repeated here.  

Three scenarios were used in the comparison described below: the first scenario 

represents uncongested condition and the other two are with one-lane blockage incidents with 
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different attributes. It should be noted that the comparison based on simulation presented in this 

section assumes that all detector measurements have 100% accuracy. This assumption is relaxed 

later in this document to determine the impacts of detector errors on the results. The temporal 

aggregation level of travel time used in the comparison is 2 minutes, which a common 

aggregation level used in travel time estimation. The SunGuide software is assumed to use the 

Point-to-Point method for travel time estimation. The measured speeds are capped by the speed 

limit (for SR-826, the speed limit is 55 mph) in SunGuide system before used in travel time 

calculation. In the comparison, the comparison with the SunGuide estimation is done with and 

without capping of the speed. 

Simulated Uncongested Scenario 

Figure 3-6 presents the travel time results for uncongested conditions and Table 3-1 

shows the accuracy and reliability of various on-line travel time estimation methods for this 

scenario. The flow-based method in Table 3-1 is the method that uses the volume count and 

occupancy to estimate the travel time as described in Appendix B, and the improved N-D method 

refers to the method developed by Vanajakshi (2009), which was selected as an example of the 

latest traffic flow theory-based methods that can be found in the literature.  

As show in Table 3-1, almost all of the on-line travel time methods can achieve good 

accuracy and reliability during uncongested conditions except the Point-to-Point method with 

capped speed, which overestimates the travel time due to the capped speed. The comparison 

among the different speed-based methods shows that the Minimum Speed method has slightly 

higher errors and lower reliability relative to the other speed-based methods. It also can be seen 

in Table 3-1 that the developed models perform well in this case. Compared to the on-line 

estimation methods, the off-line methods can achieve slightly better estimation performance, as 

shown in Table 3-2. However, this improvement is not significant. 
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(a) On-Line Estimation Results 

FIGURE 3-6 Estimated Travel Time for Simulated Uncongested Condition  
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(b) Off-Line Estimation Results 

FIGURE 3-6 Estimated Travel Time for Simulated Uncongested Condition (Con’t) 
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TABLE 3-1 Accuracy and Reliability of Tested On-Line Travel Time Estimation Methods for 
Simulated Uncongested Condition 

Method MAE 
(Minutes) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Point-to-Point Method w/ Capped Speed 0.74 11.77 80.59 19.41 0 
Point-to-Point Method w/o Capped Speed 0.12 1.92 100 0 0 
Mid-Point Method  0.08 1.31 100 0 0 
Minimum Speed Method  0.14 2.18 97.58 2.42 0 
Average Speed Method  0.08 1.34 100 0 0 
Minnesota Method  0.08 1.32 100 0 0 
Linear Speed Method  0.08 1.33 100 0 0 
Flow-Based Method  0.15 2.38 99.5 0.44 0 
Improved N-D Method  0.15 2.38 99.29 0.71 0 
Developed Hybrid Model 1  0.08 1.31 100 0 0 
Developed Hybrid Model 2  0.08 1.31 100 0 0 
 

TABLE 3-2 Accuracy and Reliability of Tested Off-Line Travel Time Estimation Methods for 
Simulated Uncongested Condition 

Method MAE 
(Minutes) MAPE (%) Reliability 

(%) % Early % Late 

Point-to-Point Method  0.11 1.76 100 0 0 
Mid-Point Method  0.06 0.94 100 0 0 
Minimum Speed Method  0.12 1.99 97.83 2.17 0 
Average Speed Method  0.06 0.99 100 0 0 
Minnesota Method  0.06 0.95 100 0 0 
Linear Speed Method  0.06 0.97 100 0 0 
Constant Acceleration Method  0.06 0.96 100 0 0 
Developed Hybrid Model 1  0.06 0.94 100 0 0 
Developed Hybrid Model 2  0.06 0.94 100 0 0 

 

Simulated Incident Scenario 1 

Figure 3-7(a) presents the results of the on-line travel time estimation for one of the 

incident scenarios used as a case study and referred to as simulated incident scenario 1 in the 

discussion of this report. In this simulation case, a one-lane blockage incident occurs at 7:35 

A.M. and lasts for 25 minutes. For clarity, Figure 3-7(b) presents the same results presented in 
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Figure 3-7(a) but only for the Point-to-Point method with capped speeds (i.e., SunGuide 

method), the on-line Minimum Speed method, and the on-line hybrid models developed in this 

study. Figure 3-7(c) shows the corresponding off-line travel time estimation results. . Figure 3-

7(a) shows that, unlike the uncongested case, the results obtained from different travel time 

estimation methods vary significantly. It appears that the Minimum Speed method can produce 

better results than the other speed-based methods for this incident scenario. The flow-based 

method and the improved N-D method can also produce relatively good results. However, these 

three methods (Minimum Speed, Flow-based method and the improved N-D method) 

overestimate the travel time at the later stage of lane blockage due to the effect of the front 

recovery shockwave, described earlier. Figure 3-7(a) also includes the results obtained from the 

hybrid models without refinements, which are slightly to moderately better than those of the 

flow-based method and the Minimum Speed method but also suffers from the front recovery 

shockwave effect. The developed refined on-line models that consider the front recovery shock 

wave performed better than the other methods, as shown in Figure 3-7(b). Figure 3-7(b) also 

shows that the SunGuide method does not perform well and significantly underestimate the 

travel time under this incident scenario.  Please note that in the figures presented in this chapter, 

the developed hybrid model 1 and 2 referred to the models with the refinement mentioned above. 

 

Table 3-3a lists the accuracy and reliability of each on-line travel time estimation method 

for this simulated incident case between 7:00 A.M. and 9:00 A.M. As stated previously, the lane 

blockage incident occurs at 7:35 A.M. and lasts for 25 minutes. It can be seen from this table that 

in general the accuracy and reliability of the estimated travel time during the incident conditions 

are not as good as those for the uncongested condition. The MAPE of travel time estimated by 

the SunGuide method with capped speed is about 12.79% and the corresponding reliability is 

76.54% with 7.72% vehicles arriving early and 15.74% vehicles arriving late. Table 3-3a also 

shows that the performance of the compared speed-based methods and flow-based methods are 

close. Compared to the other methods, both of the developed hybrid models have less errors and 

higher reliability even without the refinements. With the refinement, the accuracy and reliability 

of the hybrid models improved even further. Comparison of the results of the developed Hybrid 

Model 1 and Hybrid Model 2 shows that Model 2 performs slightly better than Model 1. 
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(a) On-Line Estimation Results 
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(b) On-Line Estimation Results 

FIGURE 3-7 Estimated Travel Time for Simulated Incident Scenario 1 (continued on next page) 
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(c) Off-Line Estimation Results 

FIGURE 3-7 Estimated Travel Time for Simulated Incident Scenario 1 (Con’t)  

 

TABLE 3-3a Accuracy and Reliability of Tested On-Line Travel Time Estimation Methods for 
Simulated Incident Scenario 1 between 7:00 A.M. and 9:00 A.M. 

Method MAE 
(Minutes) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Point-to-Point Method w/ Capped Speed 1.24 12.79 76.54 7.72 15.74 
Point-to-Point Method w/o Capped Speed 1.10 9.07 79.66 0.85 19.49 
Mid-Point Method  0.96 7.83 80.48 2.00 17.52 
Minimum Speed Method  0.86 8.23 75.53 15.55 8.92 
Average Speed Method  1.26 9.88 78.24 0.58 21.19 
Minnesota Method  1.06 8.50 80.18 1.64 18.18 
Linear Speed Method  1.18 9.32 78.70 0.58 20.72 
Flow-Based Method  0.94 8.64 80.21 8.76 11.03 
Improved N-D Method  0.99 9.30 79.93 9.20 10.87 
Hybrid Model 1 w/o Refinement  0.87 7.76 82.26 7.45 10.29 
Hybrid Model 2 w/o Refinement 0.76 6.80 82.23 7.88 9.88 
Developed Hybrid Model 1  0.58 5.55 85.98 4.93 9.09 
Developed Hybrid Model 2  0.60 5.50 87.85 1.59 10.57 
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Table 3-3b presents the performances of the on-line travel time estimation methods only 

between 7:30 A.M. and 8:30 A.M., as the time period from 7:00 A.M. to 9:00 A.M. includes 

partly uncongested conditions, while the traffic during the period of time between 7:30 A.M. and 

8:30 A.M. is completely congested. Compared to the results in the time period 7:00 A.M. to 9:00 

A.M., the errors during the time period 7:30 A.M. to 8:30 A.M. are higher and the reliabilities 

are lower. Table 3-3b indicates that the selection of the study period for comparison has a great 

impact on the travel time estimation performance evaluation. 

 

TABLE 3-3b Accuracy and Reliability of Tested On-Line Travel Time Estimation Methods for 
Simulated Incident Scenario 1 between 7:30 A.M. and 8:30 A.M. 

Method MAE 
(Minutes) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Point-to-Point Method w/ Capped Speed 1.87 16.08 57.9 9.08 33.03 
Point-to-Point Method w/o Capped Speed 2.07 16.28 57.32 1.78 40.90 
Mid-Point Method  1.86 14.78 59.05 4.19 36.76 
Minimum Speed Method  1.58 14.43 55.20 26.08 18.73 
Average Speed Method  2.45 18.81 54.34 1.21 44.46 
Minnesota Method  2.05 16.10 58.42 3.45 38.14 
Linear Speed Method  2.29 17.72 55.31 1.21 43.48 
Flow-Based Method  1.74 15.21 59.33 17.52 23.15 
Improved N-D Method  1.83 16.34 58.82 18.38 22.80 
Hybrid Model 1 w/o Refinement  1.68 14.65 62.78 15.62 21.60 
Hybrid Model 2 w/o Refinement 1.46 12.73 62.72 16.54 20.74 
Developed Hybrid Model 1  1.11 10.24 70.59 10.34 19.07 
Developed Hybrid Model 2  1.15 10.12 74.50 3.33 22.17 

 

Tables 3-4a and 3-4b present the accuracy and reliability of various off-line estimation 

methods for simulated incident scenario 1 from 7:00 A.M. to 9:00 A.M. and from 7:30 A.M. to 

8:30 A.M., respectively. As stated before, the off-line estimation can be used as a basis for 

training travel time prediction algorithms. Thus, examining off-line estimation results give an 

indication whether travel time prediction has the potential to improve the accuracy and reliability 

of the calculated travel time. As shown in both tables, for off-line applications, the Minimum 

Speed method has a relatively better performance than other speed-based methods. Again, the 

developed refined hybrid models have higher accuracy and reliability than the other methods. 
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The comparison between the results in Table 3-3b and Table 3-4b shows that both the on-line 

methods and off-line methods have similar performance except the off-line Minimum Speed 

method and the developed off-line hybrid models perform better than their on-line versions. 

These results can be explained by considering the Mid-Point method and the Minimum Speed 

method as examples in Figure 3-8. Figure 3-8(b) shows the results for on-line and off-line 

Minimum Speed methods. 

 
TABLE 3-4a Accuracy and Reliability of Tested Off-Line Travel Time Estimation Methods for 
Simulated Incident Scenario 1 between 7:00 A.M. and 9:00 A.M. 

Method MAE 
(Minutes) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Point-to-Point Method  1.09 9.28 80.65 0 19.35 
Mid-Point Method  0.94 7.74 83.63 0 16.37 
Minimum Speed Method  0.44 4.45 91.30 4.76 3.94 
Average Speed Method  1.25 9.99 80.07 0 19.93 
Minnesota Method  1.04 8.51 79.99 0 20.01 
Linear Speed Method  1.17 9.41 79.39 0 20.61 
Constant Acceleration Method 1.28 10.19 79.39 0 20.61 
Developed Hybrid Model 1  0.42 3.84 94.17 1.18 4.65 
Developed Hybrid Model 2  0.42 3.86 91.65 1.59 6.76 
 

TABLE 3-4b Accuracy and Reliability of Tested Off-Line Travel Time Estimation Methods for 
Simulated Incident Scenario 1 between 7:30 A.M. and 8:30 A.M. 

Method MAE 
(Minutes) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Point-to-Point Method  2.06 16.76 59.39 0 40.61 
Mid-Point Method  1.83 14.82 65.65 0 34.35 
Minimum Speed Method  0.75 6.82 87.02 4.71 8.27 
Average Speed Method  2.45 19.24 58.19 0 41.82 
Minnesota Method  2.04 16.32 58.01 0 41.99 
Linear Speed Method  2.29 18.10 56.75 0 43.25 
Constant Acceleration Method 2.50 19.65 56.75 0 43.25 
Developed Hybrid Model 1  0.80 7.02 87.77 2.47 9.76 
Developed Hybrid Model 2  0.79 7.05 82.48 3.33 14.19 
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(a) Mid-Point Method 
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(b) Minimum Speed Method 

FIGURE 3-8 Comparison of On-Line and Off-Line Estimation Methods  
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Simulated Incident Scenario 2 

Figure 3-9 presents the results for on-line travel time estimation for simulated incident 

scenario 2. Similar to the simulated incident scenario 1, the incident attributes correspond to a 

real-world incident from the FDOT District 6 SunGuide incident management database. This 

one-lane blockage incident occurred at 7:23 A.M. and is more severe than incident scenario 1. 

After 35 minutes, the incident was moved to the shoulder and the blocked lane was open. The 

incident was completely cleared at 8:45 A.M., 82 minutes after it started. This incident is more 

severe than incident 1, as it has a longer duration and the capacity drop due to the incident is 

higher by about 35% compared to incident 1. The arrival of fire trucks at this incident location 

appears to have a higher impact on capacity compared to Incident Scenario 1. Figure 3-9(a) 

shows the estimation results from the various on-line methods. To show the results more clearly, 

Figure 3-9(b) presents the same results but only for the SunGuide method, Minimum Speed 

method, and on-line Hybrid Models. As shown in these two figures, the travel time estimated 

using various on-line methods are not satisfactory in this incident scenario unless the refinement 

is applied to the hybrid models to account for the front shockwave recovery. The SunGuide 

method (i.e., Mid-Point method with capped speed) underestimate the travel time during the 

queue forming stage, and overestimate the travel time at the end of lane blockage. Similar trend 

can be found for other methods. One reason for this is that these methods estimate the travel time 

based on the current traffic conditions, without capturing the dynamic changes in the queue 

length as the vehicles progress from the departure location to the destination. As shown in Figure 

3-9(b), the on-line hybrid models overcome this shortcoming with the consideration of a front 

recovery shock wave. Figure 3-9(c) presents the corresponding off-line travel time estimation 

results. It is seen from this figure that the off-line estimation methods can avoid the unrealistic 

estimated peaking in travel time at the later stage of lane blocking resulting when using the on-

line methods without considering the front recovery shockwave.  
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(a) On-Line Estimation Results 
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(b) On-Line Estimation Results 

FIGURE 3-9 Estimated Travel Time for Simulated Incident Scenario 2 (continued on next page) 
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(c) Off-Line Estimation Results 

 FIGURE 3-9 Estimated Travel Time for Simulated Incident Scenario 2  

Table 3-5 presents the performance of on-line and off-line travel time estimation methods 

for simulated incident scenario 2. As shown in Table 3-5, the travel time produced by the 

SunGuide method with capped speed has a MAE of 3.61 minutes, a MAPE of 22% and a 

reliability of 55%. About 18% of the vehicles arrive to the destination earlier than posted travel 

time range and 26% of vehicles arrive late. Without capping the speed, the results are a little bit 

better.  Table 3-5 also reveals that the on-line hybrid models do not perform well without the 

refinements. However, with the refinements, the developed on-line hybrid models produce much 

better results when compared to the other methods. The comparison between these two on-line 

hybrid models shows that Model 2 has lower errors and higher reliability than Model 1 under this 

scenario. The reason for the difference in performance of the travel time estimation methods 

between incidents 1 and 2 is that incident 2 has more severe capacity constraint. Removing this 

constraint during the incident clearance stage resulted in higher and faster impact on the 

experienced travel time. Thus, not accounting for the recovery shockwave has a higher impact in 

incident 2 compared to incident 1.  
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Table 3-6 lists the performances of the off-line estimation methods for the simulated 

incident scenario 2. Compared to the results of Table 3-5, the off-line estimation methods 

perform much better than the on-line estimations. For example, the MAE, MAPE, and reliability 

are 3.71 minutes, 20%, and 61%, respectively for the on-line Mid-Point method; and 2.51 

minutes, 13%, and 72%, respectively for the off-line counterpart. Again, the off-line Minimum 

Speed and the hybrid models produce satisfactory results under this scenario as shown in Table 

3-6. The results in Table 3-6 indicate that travel time prediction could be beneficial for incident 

conditions, particularly more severe incidents with long incident durations.  

 

TABLE 3-5 Accuracy and Reliability of Tested On-Line Travel Time Estimation Methods for 
Simulated Incident Scenario 2 

Method MAE 
(Minutes) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Point-to-Point Method w/ Capped Speed 3.61 22.27 55.36 18.37 26.27 
Point-to-Point Method w/o Capped Speed 3.56 19.57 61.27 8.66 30.07 
Mid-Point Method  3.71 20.31 61.11 9.61 29.28 
Minimum Speed Method  3.88 22.28 59.53 21.59 18.88 
Average Speed Method  3.74 20.36 59.97 6.60 33.43 
Minnesota Method  3.68 20.17 60.22 9.45 30.33 
Linear Speed Method  3.70 20.23 60.10 7.63 32.27 
Flow-Based Method  4.49 25.04 60.46 20.32 19.22 
Improved N-D Method  3.32 19.92 59.61 20.52 19.87 
Hybrid Model 1 w/o Refinement  4.42 24.47 62.87 17.34 19.79 
Hybrid Model 2 w/o Refinement 3.84 21.66 60.87 18.94 20.19 
Developed Hybrid Model 1  1.89 11.08 67.46 10.50 22.04 
Developed Hybrid Model 2  1.75 9.82 70.03 7.71 22.26 
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TABLE 3-6 Accuracy and Reliability of Tested Off-Line Travel Time Estimation Methods for 
Simulated Incident Scenario 2 

Method MAE 
(Minutes) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Point-to-Point Method  2.73 14.75 70.60 1.67 27.72 
Mid-Point Method  2.51 13.37 72.32 2.15 25.54 
Minimum Speed Method  1.21 7.35 73.68 11.49 14.83 
Average Speed Method  3.31 17.62 65.16 0.99 33.85 
Minnesota Method  2.77 14.74 69.41 2.04 28.55 
Linear Speed Method  3.10 16.47 67.22 0.99 31.79 
Constant Acceleration Method 3.43 18.23 64.08 0.99 34.93 
Developed Hybrid Model 1  1.03 6.28 76.69 8.90 14.41 
Developed Hybrid Model 2  1.21 7.07 75.60 9.05 15.36 
 

3.3.2. Comparison Based on Real-world Data  

In addition to the use of simulation, further assessment of travel time estimation methods 

was made using real-world data. The actual travel time was collected using videos from CCTV 

cameras deployed along the study corridor by matching the vehicles passing the field of view of 

one CCTV camera location to those passing the field of view of another CCTV camera location. 

The results for one congested case and one uncongested case are presented in this report. Both 

investigated cases represent recurrent conditions (no incident conditions). For the uncongested 

case, the travel times between two detector stations, DS-1515E and DS-1545E (a distance of 

about 5.02 miles) were collected for the Midday period on December 2, 2008. For the congested 

case, the travel times between detector stations DS-1519E and DS-1545E (a distance of about 

4.58 miles) were collected for the morning peak period on March 10, 2010.  

Figure 3-10 presents the travel time estimation results for the two cases mentioned above. 

It should be mentioned that the congestion level in the congested case is significantly lower than 

the congestion level resulting from the incident scenarios explored in the simulation models and 

discussed in Section 3.3.1. Figures 3-10(a) and Figure 3-10(b) show the estimation results for 

uncongested conditions during the Midday period. It is seen from these figures that even though 

the travel times produced by the Point-to-Point method with capped speed overestimates the 

travel time due to the capped speed, the difference between the estimated travel times by the 

SunGuide method and the actual travel time is small. The travel time estimates obtained using 
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the speed-based methods as well as the developed models were also very close when the traffic is 

not congested. Compared to the other methods, the Minimum Speed method slightly 

overestimated the travel time, and the results from the flow-based method and improved N-D 

method are more fluctuated.  

For the congested case, the results shown in Figures 3-10(c) and Figure 3-10(d) indicate 

that except for the Minimum Speed method, all the other speed-based methods, including the 

Point-to-Point method with capped speed, underestimated the travel time under congested traffic 

conditions. This was true for both the on-line and off-line applications. The flow-based method 

and the improved N-D method performed better. The developed hybrid models also produced 

travel times that were also close to the actual travel times.  
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(a)  On-Line Estimation Results during Midday on Dec. 2, 2008 
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(b)  Off-Line Estimation Results during Midday on Dec. 2, 2008 

FIGURE 3-10 Estimated Travel Time for Real-world Cases  
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(c)  On-Line Estimation Results during Morning Peak Period on Mar. 10, 2010 
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(d)  Off-Line Estimation Results during Morning Peak Period on Mar. 10, 2010 

FIGURE 3-10 Estimated Travel Time for Real-world Cases (Con’t)   

TABLE 3-7 Accuracy of Tested On-Line Travel Time Estimation Methods for Real-world Cases 

Method 
Case 1 (Uncongested) Case 2 (Congested) 

MAE 
(Min.) 

MAPE 
(%) 

MAE 
(Min.) 

MAPE 
(%) 

Point-to-Point Method w/ Capped Speed 0.56 11.32 0.65 9.95 
Point-to-Point Method w/o Capped Speed 0.14 2.81 0.94 14.78 
Mid-Point Method  0.14 2.87 0.66 10.20 
Minimum Speed Method  0.23 4.71 0.37 6.31 
Average Speed Method  0.14 2.83 0.81 12.66 
Minnesota Method  0.14 2.86 0.70 10.86 
Linear Speed Method  0.14 2.84 0.76 11.76 
Flow-Based Method  0.18 3.56 0.53 8.79 
Improved N-D Method  0.20 3.90 0.54 9.03 
Developed Hybrid Model 1  0.14 2.87 0.46 7.75 
Developed Hybrid Model 2 0.14 2.87 0.39 6.80 
 

 

 



Decision Support Tools to Support the Operations of TMCs 

57 

 

TABLE 3-8 Accuracy of Tested Off-Line Travel Time Estimation Methods for Real-world Cases 

Method 
Case 1 (Uncongested) Case 2 (Congested) 

MAE  
(Min.) 

MAPE 
(%) 

MAE  
(Min.) 

MAPE 
(%) 

Point-to-Point Method  0.14 2.71 0.94 14.75 
Mid-Point Method  0.14 2.70 0.63 9.68 
Minimum Speed Method  0.23 4.67 0.33 5.40 
Average Speed Method  0.13 2.66 0.81 12.55 
Minnesota Method  0.14 2.68 0.69 10.61 
Linear Speed Method  0.13 2.67 0.75 11.65 
Constant Acceleration Method 0.13 2.66 0.82 12.63 
Developed Hybrid Model 1  0.14 2.70 0.38 6.20 
Developed Hybrid Model 2 0.1 2.70 0.35 5.74 
 

Since not all individual vehicle travel times can be collected and the actual travel time 

distribution is unknown using the collect real-world data, the reliability of the estimated travel 

time cannot be calculated based on the real-world as was done using data produced using 

simulation. Thus, only the accuracy performance measures are presented in Tables 3-7 and 3-8. 

As shown in Table 3-7, the performance of various travel time estimation methods during 

uncongested conditions (Case 1) are similar to those obtained from simulation. The Minimum 

Speed method, flow-based method, and the Improved N-D method were slightly less accurate 

than other methods. For congested conditions (Cases 2), the minimum speed method and Hybrid 

Model 2 perform the best among the tested methods. The traffic flow method and Hybrid Model 

1 also perform relatively well compared to other methods. Comparing the results from the off-

line methods with those from the on-line methods indicates that the off-line estimation improved 

the travel time estimation slightly. 

3.4. Impacts of Influential Factors 

In addition to the travel time estimation algorithms, factors such as the impacts of data 

preprocessing procedures, detector errors, and travel time posting strategies are also expected to 

affect the accuracy and reliability of travel time estimation. Therefore, their impacts on the on-

line travel time estimation are investigated in this study. The results discussion presented in this 

section is using the Hybrid Model 2 as an example, since the impacts of these factors on all other 

methods generally show the same trend as Hybrid Model 2. The analysis results of the other 
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estimation methods can be found in Appendix C. Note that Hybrid Model 1 and Hybrid Model 2 

in these tables refer to the refined on-line hybrid models developed in this study.  

3.4.1. Data Preprocessing 

Data preprocessing includes data filtering, data smoothing, data aggregation, and data 

imputation. This study investigates and compares the impacts of different methods to perform 

these steps on travel time estimation, as described below.  

Data Smoothing  

In this section, two different smoothing methods are compared: the simple moving 

average (which is the method used in SunGuide) and the exponential moving average. The 

simulated incident scenario 1, described in Section 3.3, is used to test the impacts of data 

smoothing methods on travel time estimation. In this scenario, the estimated travel time is 

updated every 2 minutes, and the estimation performance is calculated for the time period 7:30 

A.M. – 8:30 A.M. Table 3-9 presents the estimation results with these two types of smoothing 

methods for the on-line Hybrid Model 2. As shown in Table 3-9, for the simple moving average 

method, the estimation errors generally increase with the increase in the value of rolling period. 

As mentioned in the previous section, the rolling period is a parameter that controls the moving 

window size for the determination of number of data points to be used in the moving average. 

When a large rolling period is used, more historical information will be included in the travel 

time estimation, which can dilute changes in traffic conditions such as the impacts of queue 

length changes, thus resulting in higher estimation errors in dynamically changing situations like 

incident scenarios. It is also seen in this table that a smaller rolling period can achieve better 

reliability in travel time estimation for incident conditions. 

The travel time estimation results obtained using the exponential moving average is also 

presented in Table 3-9. The smoothing factor in the exponential moving average method can 

have any value between 0 and 1. A higher value of this smoothing factor reduces the effects of 

older observations faster. Comparing the results with those calculated from simple moving 

average indicates that for Hybrid Model 2 and the investigated incident scenario, the exponential 

moving average method produces more accurate and reliable results than the simple moving 
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average method, since the exponential moving average method can give more weights to the 

latest data in the smoothing. It should be mentioned that these results are based on simulation 

analysis that assumes 100% detector measurement accuracy. 

 

TABLE 3-9 Accuracy and Reliability of Travel Time Estimation Using Different Smoothing 
Methods 

Hybrid Model 2 Factor MAE 
(Minutes) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Simple Moving 
Average 

Rolling 
Period 

1-minute 1.44 12.72 63.70 17.17 19.13 
2-minute 1.59 13.86 61.45 16.72 21.83 
3-minute 1.73 15.00 58.93 16.72 24.35 
4-minute 1.89 16.29 56.23 19.01 24.76 
5-minute 2.04 17.72 48.65 24.81 26.54 

Exponential 
Moving Average 

Smoothing 
Factor 

0.2 1.49 12.51 69.21 3.33 27.46 
0.4 1.15 10.12 74.50 3.33 22.17 
0.6 1.03 9.28 73.92 4.36 21.71 
0.8 0.99 8.98 74.73 4.54 20.74 
1.0 1.09 9.60 73.23 4.48 22.29 

 

Data Imputation 

To test the effects of different data imputation methods, 50% of the detector 

measurements were randomly removed for the simulated incident scenario 1. As mentioned 

earlier in this chapter, data imputation can be conducted spatially and/or temporally, and the 

spatial imputation can be performed within a station or between stations. Therefore, different 

combinations of these imputation types were tested in this study including with or without 

within-station imputation for speed, with or without temporal imputation, and four different 

types of between-station imputations. These four types are the simple average, linear 

interpolation, linear interpolation for speed and occupancy but factor method for volume, and 

factor method for all traffic parameters, as mentioned in data preprocessing section. For the 

factor method, the factors are estimated based on data for all the workdays in December, 2008.  
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TABLE 3-10 Results of Different Data Imputation Methods 
Hybrid 
Model 2 

Temporal 
Imputation 

Between-Station 
Imputation  

MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% 
Early 

% 
Late 

Developed Hybrid Model 2 w/o missing data 1.15 10.12 74.50 3.33 22.17 

w/o 
Within-
Station 
Imputation 

w/o 
Temporal 
Imputation 

Simple Average 1.23 10.72 72.20 4.77 23.03 
Linear Interpolation 1.23 10.70 72.20 4.77 23.03 
Linear Interpolation for S 
and O, and Factor for V 1.23 10.70 72.20 4.77 23.03 

Factor Method 1.24 10.77 71.97 4.77 23.26 

Average of 
Temporal 
and Spatial 
Imputations 

Simple Average 1.23 10.64 72.20 4.77 23.03 
Linear Interpolation 1.22 10.61 72.20 4.77 23.03 
Linear Interpolation for S 
and O, and Factor for V 1.22 10.61 72.20 4.77 23.03 

Factor Method 1.23 10.64 72.20 4.77 23.03 

w/ Within-
Station 
Imputation 

w/o 
Temporal 
Imputation 

Simple Average 1.20 10.48 73.58 4.77 21.65 
Linear Interpolation 1.20 10.48 73.58 4.77 21.65 
Linear Interpolation for S 
and O, and Factor for V 1.20 10.48 73.58 4.77 21.65 

Factor Method 1.20 10.48 73.58 4.77 21.65 

Average of 
Temporal 
and Spatial 
Imputations 

Simple Average 1.20 10.48 73.58 4.77 21.65 
Linear Interpolation 1.20 10.48 73.58 4.77 21.65 
Linear Interpolation for S 
and O, and Factor for V 1.20 10.48 73.58 4.77 21.65 

Factor Method 1.20 10.48 73.58 4.77 21.65 
* S represents speed, V dictates volume count, and O is occupancy.  

 

Table 3-10 shows the impacts of the data imputation methods on the performance of 

travel time estimation results. It should be mentioned that the performance calculation is based 

on the time period between 7:30 A.M. and 8:30 A.M. that is heavily impacted by the incident 

conditions. The results in this table show that the impact of randomly missing data when 

properly imputed is not high. As mentioned above 50% of the detector measurements were 

removed. Slight differences in the accuracy of the resulting travel times can be observed from 

Table 3-10 for different imputation methods. 

3.4.2. Detector Errors 

Traffic data measured by point detectors include errors of different types: 
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• Intrinsic error due to measurement noise,  

• Systematic error (for example, due to inadequate calibration or device inaccuracy), and  

• Data missing due to incidental and/or structural failure resulted from temporary power 

outages or detector malfunctions.  

 

The impacts of these three types of errors on travel time estimation performance are discussed 

below. 

Intrinsic Error 

Intrinsic errors are inherent to detectors and reflect their measurement accuracies. The 

magnitude of the intrinsic error in measuring a given variables depends on the detector type 

under consideration. For example, Electronic Integrated Systems Inc. (EIS) the vendor of the 

RTMS detectors reported that for RTMS detectors from a side fire location; the errors are 

expected to be 10% in speed, 5% in volumes, 10% in long vehicle volumes, and 5% in 

occupancy (EIS 2010). To investigate the impacts of such errors on travel time estimation, the 

detector data resulting from CORSIM were modified to emulate these types of errors. Similar to 

the study of Byon et al. (2009), a normal distribution was used to introduce the intrinsic errors in 

the simulated detector data of this study. The used normal distribution has a mean of zero, and a 

standard deviation determined by device measurement accuracy. It is assumed that 99.7% of 

measurements are within 6 standard deviations of the mean detector error (zero). This 

assumption leads to the following equation: 

                                                     ErrX typical ×= 26σ                                  (3-38) 

where σ denotes the standard deviation, Xtypical is selected to be a common measurement value at 

the high end of each of the three basic variables (speed, volume, or occupancy), and Err is the 

corresponding measurement error. Measurement at the high end is selected such that the worst 

case standard deviation is accounted for. This investigation assumes that the speed measurement 

is within ±10%, volume measurement within ±5%, and occupancy measurement within ±5%. 

With the assumptions of 65 mph, 1700 veh/hr, and 100%, as typical speed, volume, and 

occupancy measuremewnts; Equation 3-38 yields the following standard deviations values: 2.2 

mph for speed, 28.3 veh/hr for volume, and 1.7 for occupancy. 
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In this study, the intrinsic errors were introduced in two simulated scenarios: an 

uncongested scenario and incident scenario 1. For each scenario, 10 random cases were 

generated and the results are presented in Table 3-11 for Hybrid Model 2 and in Tables C-5 and 

C-6 (in Appendix C) for other methods. As shown in Table 3-11, the performance of Hybrid 

Model 2 does not change much with the intrinsic errors introduced for the uncongested scenario. 

However, the performance is affected by the error for the incident scenario. It should be noted 

that the results presented in Table 3-11 is with data filtering and imputation. The impacts of 

intrinsic errors are expected to be higher without proper filtering and imputation and also with 

higher detector error. 

  

TABLE 3-11 Impacts of Intrinsic Errors on Travel Time Estimation Performance  

Hybrid Model 2 Cases MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Simulated 
Uncongested 
Conditions 

w/o Intrinsic Errors 0.082 1.31 100 0 0 
w/ 

Intrinsic 
Errors 

Average 0.083 1.33 100 0 0 
Minimum 0.081 1.30 100 0 0 
Maximum 0.085 1.36 100 0 0 

Simulated 
Incident 
Conditions 

w/o Intrinsic Errors 1.15 10.12 74.50 3.33 22.17 
w/ 

Intrinsic 
Errors 

Average 1.58 12.87 64.59 4.24 31.17 
Minimum 1.23 10.66 61.17 2.59 22.34 
Maximum 1.75 13.97 71.17 6.49 34.75 

Systematic Error 

Point detectors are not always well calibrated or have underestimation or overestimation 

problems in measurements. These are referred to as systematic errors in the reported 

measurements. The accuracy of some types of point detectors decrease under low speed 

conditions. To test how such errors in low speed measurements affect the accuracy and reliability 

of travel time estimation methods, systematic errors are introduced to the perfect simulated 

detector data when speed is less than 20 mph, and the analysis results are presented below by 

using Hybrid Model 2 as an example. It is seen from Table 3-12, when the measure low speeds 

are artificially increased or decreased by 20%, the error of the estimated travel time increased 

slightly from 10.1% to about 12%. However, with an introduced systematic error of 40% in the 

measured speeds, the estimated error in travel time increased by 4%-5%, compared to the case 
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without errors in measured speeds. The reliability of travel time estimates decrease significantly 

when the point detector systematically reports lower speeds than the actual values during the 

congested conditions, as shown in Table 3-12.  

 

TABLE 3-12 Impacts of Systematic Errors in Low Speed Measurements on Travel Time 
Estimation Performance for Simulated Incident Conditions  

Method Cases  MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Hybrid Model 2 

w/o Errors 1.15 10.12 74.50 3.33 22.17 
20% Increase in Low Speed 1.37 11.52 71.97 1.21 26.82 
40% Increase in Low Speed 1.66 13.57 68.18 0.98 30.84 
20% Decrease in Low Speed 1.46 12.33 61.69 16.94 21.37 
40% Decrease in Low Speed 1.88 15.19 57.15 16.83 26.02 

 

Incidental and Structural Failure  

In addition to the two types of errors mentioned above, incidental and/or structural 

failures may also exist in detector data (Vant Lint 2004). The incidental or occasional failure 

occurs randomly. Various factors may contribute to its occurrence, such as temporary 

communication system failure resulting from power outrages for example. Figure 3-12 presents 

histograms of incidental and structural failures for detectors DS-1509E-Lane-1 and DS-1549E-

Lane-1, as examples, and also for all the detectors along SR826 in December, 2008. Note that the 

units of the x-axis in Figure 3-12(a) and Figure 3-12(c) are minutes and those for Figure 3-12(b) 

and Figure 3-12(d) are hours. Most of the missing data duration is less than 2 minutes. 
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(b) 

FIGURE 3-12 Examples of Incidental and Structural Failures  
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(d) 

FIGURE 3-12 Examples of Incidental and Structural Failures (Con’t) 
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To quantify the impacts of incidental and structural failures, worst case scenarios were 

created by introducing failures to the error-free simulated detector data. These failure scenarios 

were created based on what happens in real-world detector data during the study period in 

December, 2008. Since a detector may fail more than once, the longest duration of the missing 

data during the failure period was used. 

Table 3-13 shows the impacts of incidental and structural failures on travel time 

estimation performance during both uncongested and incident conditions. The results in this 

table show that, even with the worst case of incidental and structural failures, after imputing the 

missing data, these failures do not have high impacts on the estimated travel time accuracy for 

the uncongested conditions. However, for the incident scenario, the existence of incidental and 

structural failures can result in large increase in estimation errors and also reduction in reliability. 

This can be explained by the fact that even though the data imputation procedure is applied to 

replace the missing data during incident conditions, due to fast changes in traffic conditions, the 

filled data may not be able to completely capture such changes, resulting in a less satisfying 

performance. 

 

TABLE 3-13 Impacts of Incidental and Structural Failures on Travel Time Estimation 
Performance  

Hybrid Model 2 Cases  MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Simulated 
Uncongested 
Conditions 

w/o Errors 0.08 1.31 100 0 0 
w/ Incidental and 
Structural Errors 0.10 1.54 100 0 0 

Simulated 
Incident 
Conditions 

w/o Errors 1.15 10.12 74.50 3.33 22.17 
w/ Incidental and 
Structural Errors 1.95 17.58 62.44 15.45 22.11 

 

3.4.3. Travel Time Posting Configurations 

Travel time posting strategies, such as travel time updating frequency, travel time link 

length, and the range of posted travel time are also expected to affect the accuracy and reliability 

of travel time estimates. This section includes the results of tests conducted in this study to 

investigate the impacts of these influential factors.  
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Travel Time Updating Frequency 

Sensitivity analysis is conducted in this study to understand the impacts of the travel time 

updating frequency on the accuracy and reliability of travel time estimates. Updating frequencies 

ranging from 1 to 5 minutes are included in the analysis. Table 3-14 displays the travel time 

estimation results for the simulated uncongested conditions and incident conditions as well. The 

results in this table indicate that for the uncongested conditions, a longer travel time updating 

interval does not lead to worse estimation performance, since the traffic is relatively stable under 

uncongested conditions. But for the incident scenario, it is seen that the errors increase and the 

reliability is reduced with the increase in travel time update interval. This indicates that a more 

frequent updates in travel time estimates is preferred for incident conditions due to the varying 

traffic conditions during incidents. 

 

TABLE 3-14 Travel Time Estimation Performances with Different Travel Time Updating 
Frequencies  

Hybrid Model 2 Updating 
Frequency 

MAE 
(Minutes) MAPE (%) Reliability 

(%) % Early % Late 

Simulated 
Uncongested 
Conditions 

1-minute 0.10 1.62 100 0 0 
2-minute 0.08 1.31 100 0 0 
3-minute 0.07 1.16 100 0 0 
4-minute 0.07 1.15 100 0 0 
5-minute 0.07 1.06 99.89 0.11 0 

Simulated 
Incident 
Conditions 

1-minute 1.16 10.21 74.24 2.58 23.18 
2-minute 1.15 10.12 74.50 3.33 22.17 
3-minute 1.31 11.31 70.55 4.64 24.81 
4-minute 1.35 11.85 55.38 17.69 26.93 
5-minute 1.34 11.25 69.56 6.86 23.58 

 

Travel Time Link Length 

To show the impacts of travel time link lengths, four different travel time links are 

defined as follows: 

• DS-1523E – DS-1549E (Distance: 4.24 miles) 

• DS-1521E – DS-1549E (Distance: 4.55 miles) 

• DS-1517E – DS-1549E (Distance: 5.27 miles) 
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• DS-1509E – DS-1549E (Distance: 6.42 miles) 

 

Table 3-15 presents the travel time estimation accuracy and reliability for these defined 

travel time links under the uncongested and incident 1 scenarios. The mean absolute errors are 

seen to increase with the increase in the link length. However, the mean absolute percentage 

errors do not monotonically change with such increase in distance as this performance measure is 

also related to the actual travel time for the studied travel time link. The reliability does not 

necessarily decreases as the distance increases since the reliability is also determined by the 

range of posted travel time. Similar conclusions can be obtained based on the results in Table 3-

15 for the incident conditions. Any conclusions based on the reported results are limited to the 

range of the increase in length investigated in this study.  

  

TABLE 3-15 Travel Time Estimation Performances with Different Travel Time Link Lengths   

Hybrid Model 2 Origin-Destination Distance 
(Miles) 

MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% 
Early 

% 
Late 

Simulated 
Uncongested 
Conditions 

DS-1523E-DS-1549E 4.24 0.05 1.16 100 0 0 
DS-1521E-DS-1549E 4.55 0.05 1.15 99.69 0.08 0.23 
DS-1517E-DS-1549E 5.27 0.06 1.09 100 0 0 
DS-1509E-DS-1549E 6.42 0.08 1.31 100 0 0 

Simulated 
Incident 
Conditions 

DS-1523E-DS-1549E 4.24 0.88 13.69 91.40 0 8.60 
DS-1521E-DS-1549E 4.55 1.05 13.50 81.94 4.59 13.47 
DS-1517E-DS-1549E 5.27 1.05 10.90 75.52 3.38 21.10 
DS-1509E-DS-1549E 6.42 1.15 10.12 74.50 3.33 22.17 

 

Posted Travel Time Range 

As mentioned above, the FDOT District 6 divides the estimated travel time into four 

categories: less than 5 minutes, between 5 and 10 minutes, between 10 and 35 minutes, and 

greater than 35 minutes (FDOT District 6 2010). The corresponding ranges of travel time for 

these four categories are under 5 minutes, 3-minute range around the estimated travel time, 5-

minute range around the estimated travel time, and over 35 minutes; respectively. 

Sensitivity analysis is conducted to see how the reliability of travel time estimation 

changed by adjusting the posted travel time range. The corresponding estimation performance is 

listed in Table 3-16. This table shows that for uncongested conditions, the reliability of the 
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posted travel time is close to 100% even when the posted travel time range is decreased to 2 

minutes. However, if the travel time range is further reduced to one minute, the reliability of the 

estimated travel time is significantly impacted.  

Note that the posted travel time range in Table 3-16 for incident conditions is mainly for 

travel time estimates that are greater than 10 minutes, due to the congestion caused by the 

incident. It can be seen from this table that if the upper value of travel time range is increased to 

higher than 3 minutes, the reliability of the estimated travel time does not improve. This 

indicates that this is not beneficial. Decreasing the lower rang to 1 minute reduces the reliability. 

 

TABLE 3-16 Travel Time Estimation Reliability with Different Posted Travel Time Ranges  

Hybrid Model 2 Range of Posted 
Travel Time Reliability (%) % Early % Late 

Simulated Uncongested 
Conditions 

[TT-2, TT+2] 100 0 0 
[TT-1, TT+2] 100 0 0 
[TT-1, TT+1] 99.29 0 0.71 
[TT-0.5, TT+0.5] 70.07 0.42 29.52 

Simulated Incident 
Conditions 

[TT-2, TT+3] 74.50 3.33 22.17 
[TT-2, TT+4] 75.88 3.33 20.79 
[TT-2, TT+5] 75.88 3.33 20.79 
[TT-1, TT+4] 69.67 9.54 20.79 
[TT-1, TT+5] 69.67 9.54 20.79 
[TT-1, TT+6] 70.25 9.54 20.22 

 

3.5. Conclusions 

A review of previous studies indicates that although speed-based methods similar to those 

used in the SunGuide software can produce acceptable results at lower levels of congestion, there 

are questions regarding their abilities to produce accurate and reliable estimates of travel times 

under recurrent and non-recurrent congested conditions. This study has developed two hybrid 

on-line travel time estimation models and two corresponding off-line methods to estimate 

freeway travel times based on point detector measurements. Hybrid Model 1 combines the Mid-

Point method (which is similar to the SunGuide method) with a traffic flow-based method. 

Hybrid Model 2 combines the Mid-Point method with the Minimum Speed method. The 

switching between the travel time estimation methods within each model is accomplished based 
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on the congestion levels and queue status. In addition, during incident conditions with fast 

changing queue lengths, refinements are introduced to the developed models to account for the 

fast queue prorogation and recovery. 

The travel time estimates obtained from existing speed-based methods, traffic flow-based 

method, and the developed models are tested by using both simulation and real-world travel time 

data as ground truth data. The performance measures for these methods are quantified in terms of 

accuracy as well as reliability. The results indicate that all of the tested methods perform at 

acceptable and comparable levels at low congestion levels. However, their performances vary 

with the increase in congestion levels. The comparison with other estimation methods shows that 

the developed hybrid models perform well in all cases. Further comparisons between the on-line 

and off-line travel time estimation results reveal that off-line methods perform significantly 

better only during fast changing congested conditions such as during incidents. The difference in 

performance between the on-line and off-line methods increases with the increase in congestion 

levels. 

During low congestion levels, the Minimum Speed method and flow-based methods 

produce slightly less accurate results compared to other methods. However, the difference is not 

significant. For moderately recurrent congested conditions assessed using real-world travel time 

measurements, the minimum speed method and Hybrid Model 2 perform the best among the 

tested methods. The traffic flow method and Hybrid Model 1 also perform relatively well 

compared to other methods. Comparing the results from the off-line methods with those from the 

on-line methods indicates that the off-line estimation improves the travel time estimation 

slightly. 

For fast changing conditions during incidents; simulation results indicate that the 

SunGuide method underestimates the travel time during the queue forming stage, and 

overestimate the travel time at the end of lane blockage. Similar trends can be found for other 

methods at varying degrees depending on the tested method and the degree of congestion. The 

flow-based methods, the Minimum Speed method, and the developed hybrid models perform 

better than other speed-based models. However, they also overestimate the travel times at the 

later stages of lane blockage due to the effect of the front recovery shockwave during incident 

clearance. This overestimation becomes higher with the increase in the queuing severity during 
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incidents. The refinements introduced to account for queue propagation and recovery stages are 

proposed to deal with these estimation problems.  

Based on the results of this study, it is recommended that the Minimum Speed Method 

and/or the Hybrid Model 2 developed in this research are considered for implementation and 

testing in SunGuide. This recommendation is based on these model performances and the ease of 

their implementations compared to traffic flow models. The refinements to account for queue 

growth and dissipation dynamics should be also considered. 

SunGuide includes a limited real-time testing for detector errors. Additional real-time 

testing for erroneous detector data is presented in this document and is recommended for use in 

the SunGuide software. The impacts of major influential factors, such as data preprocessing 

procedures, detector errors, and travel time posting strategies, on the performance of travel time 

estimation, are investigated in this study. The sensitivity analysis results show that these factors 

do not have significant impacts on the estimation accuracy and reliability during the uncongested 

conditions, however, for the incident conditions, the travel time estimation requires the usage of 

a short rolling period for data smoothing, more accurate detector data, and frequent travel time 

updating to achieve better performance. 

The results of the investigation presented in this document indicates that the spatial 

imputation method used in the SunGuide software to account for missing data appears to perform 

as good as other investigated methods. When estimating travel time during incident conditions, 

the use of the exponential moving average produces more accurate and reliable results compared 

to the simple moving average method, since the exponential moving average method can give 

more weights to the latest data in the smoothing and can account better for the fast changing 

dynamic conditions during incidents. When using the simple moving average method during 

incident conditions, shorter rolling time intervals produce better results.  

The results of the study also show that intrinsic errors due to measurement noise, 

systematic errors (for example, due to inadequate calibration or device inaccuracy), and data 

missing due to incidental and/or structural failure can affect negatively the performance of travel 

time conditions during congested conditions but not uncongested conditions. 

The results from this study indicates that for uncongested conditions, a longer travel time 

updating interval does not lead to worse estimation performance, since the traffic is relatively 

stable under uncongested conditions. For incident scenarios, the errors increase and the reliability 
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decreases with the increase in travel time update interval. The errors also increase with the 

increase in the travel time link length under incident conditions. It appears that a posted travel 

time range of two minutes generally produces good results.  However, if the travel time range is 

further reduced to one minute, the reliability of the estimated travel time is significantly 

impacted. 
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4. Estimation of Traffic Diversion 

4.1. Introduction  

A number of technologies are used for disseminating traveler information, such as 

highway dynamic message signs (DMS), Highway Advisory Radio (HAR), traveler information 

telephone systems, and web sites. One of the most important parameters for assessing the 

impacts and benefits of these deployments is the diversion rates under different incident and 

traffic conditions.  The estimation of the diversion rate is important to justify the deployments 

from a cost and benefit point of view. In addition, the estimation will support the assessment of 

the guidelines and procedures of information dissemination. Estimating the percentages of 

travelers likely to divert to alternative routes also allows better estimation of the impacts on the 

alternative routes and the optimization of signal timings on these routes during incident 

conditions. In this research, a method was developed to estimate traffic diversion based on the 

traffic detector and incident data.  

4.2. Literature Review  

Researchers have used Stated Preferences (SP) and Revealed Preference (RP) to estimate 

the the percentages of travelers diverted due to information provision. The SP methods involves 

conducting a survey of travelers that usually includes presenting a series of hypothetical 

scenarios to be evaluate. The travelers are asked to make discrete choices between travel 

alternatives under different conditions. On the other hand, the RP approaches use field data 

collection techniques to evaluate the effectiveness of ATIS technologies on drivers’ route choice 

behavior. The advantage of the SP approach is the ability to control the choice content and the 

independent variables that will be entered into the demand model. The disadvantages of the 

approach are related to the fact that individuals are not committed to behave in accordance with 

their stated preference responses.  

Several studies (Madanat et al. 1995, Peeta el al. 2000, Wardman et al. 2003) have 

conducted SP surveys to evaluate the drivers’ responses to DMS and other ATIS devices. Peeta 

et al. (1995) conducted three different types of surveys (mail back, on-site, and web-based 

surveys) to estimate the driver’s response to DMS. The aim of the survey questionnaire used in 
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this study was to obtain information about drivers’ response to DMS (driver’s willingness to use 

the information posted on the DMS or not). The responses were related to driver’s familiarity 

with alternate roadways, estimated trip time, and socio-economic characteristics. From this 

study, it was revealed that the content of the message disseminated had a significant impact on 

drivers’ responses; for example, drivers were more willing to divert to alternate routes when the 

message posted on DMS indicated that the incident type is accident. Khattak et al. (1993) found 

that significantly more commuters diverted to alternate routes when the motorists where 

informed that the queue length was higher. Another study conducted by Madanat (1995) 

concluded that approximately 5% of the drivers surveyed were willing to divert when the delays 

expected were greater than half an hour. An SP study conducted by Huchingston et al. (2005) in 

Chicago showed that travelers are more willing to divert during the non-recurring conditions as 

opposed to daily rush hour congestion. Commuters were more willing to take alternate routes 

when the incident occurred in the morning peak hours dominated by home-work trips. 

    In general SP surveys concluded that the disseminated information can result in up to 

60% to 70% of freeway traffic exiting the freeway ahead of an incident location (Barfield et al. 

1989, Benson 1996, Madanat et al. 1995, Chatterjee et al. 2002). However, limited information is 

available about the actual diversion due to traveler information as reflected by field 

measurements (revealed preference). Several European field studies have found that DMS 

compliance rates range from 27% to 44% (Tarry and Graham 1995). Knopp et al. (2009) in 

another European study found that for major incidents, up to 50% of travelers take another route.  

Luk and Yang (2003) developed a simulation modeling framework to assess the performance of 

Advanced Traveler Information Systems (ATIS) under different conditions. They assumed the 

average diversion rate to be 15% and the highest diversion rate to be 30%. Cragg and Demetsky 

(1995) used the CORSIM microscopic simulation tool to analyze route diversion strategies from 

freeways to arterial roads. The study concluded that there was often an optimal diversion 

percentage beyond which the system delays increased. This diversion percentage is expected to 

be different for different systems depending on traffic and incident conditions on the original and 

alternative routes. 

With the advent of ITS, enormous traffic data is being generated daily by the ITS devices 

deployed on the freeway systems. As such, interest has increased in using such data to better the 

transportation decision making processes. Huo and Levinson (2006) conducted a study to 
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evaluate the effectiveness of DMS located on the I-35E corridor in Minnesota. A total of 45 

messages displayed under different incident conditions were studied. Based on the five-minute 

interval traffic data from loop detectors (including both mainline and ramps), a weighed probit 

model was developed to estimate diversion behavior. They found that the content of the message 

displayed on DMS had a significant impact on diversion behavior. After DMS installation, travel 

time was reduced by 6.4% and the delay was reduced by 5%, with a diversion of about 8%.  

The review of literature conducted in this study indicated that additional research is 

needed to develop methods to estimate driver diversion based on archived ITS data. The 

objective of this task is to develop such a method. The method should allow the estimation of the 

diversion rates without requiring measurements from on-ramp and off-ramp detectors since on-

ramp and off-ramp detectors are not normally installed in typical ITS deployments in Florida.  

4.3. Methodology  

The first step in the methodology of this study to determine the average diversion rate for 

a given corridor is to extract the attributes of a sample of the incidents that occur on the corridor 

from the incident database. A set of criteria should be set for the selection of incidents, 

depending on the purpose of the study.  The selected incidents have to be associated with 

measurements from traffic detector stations at locations upstream and downstream of the incident 

location. This association allows the determination of the diversion rate at each detector location 

based on detector measurements. The methodology of this study estimates diversion rates based 

on calculating the difference in the cumulative traffic volumes between an average typical non-

incident day and the incident day based on traffic detector measurements. Therefore, the average 

“typical” non-incident day and incident day traffic volumes should be determined before the 

actual diversion rate is calculated. 

 

4.3.1. Demand Estimation 

As mentioned above, the cumulative volumes for the no-incident and incident days are 

required for the methodology of this study. These volumes are obtained based on data collected 

by traffic detection stations. The volumes for the incident day will need to be obtained by 
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extracting traffic detector measurements for the incident day. This will require the association of 

the time and location of the incident with the traffic data from detectors.  

Another necessary step is the calculation of the average cumulative volume for typical 

non-incident days that have traffic demand patterns similar to the expected demand pattern 

during the incident day, if the incident does not occur on that day. The procedure described 

below is utilized to obtain this volume. 

The identification of the typical non-incident days was accomplished using the k-means 

clustering algorithm as discussed in another FDOT research project conducted by the authors 

(Hadi et al. 2010). The algorithm utilizes the time-variant detector measurements at each 

detection station to classify the days into groups with similar traffic patterns. By examining these 

patterns, the analyst can clearly identify the typical day pattern that is expected to be similar to 

the incident day pattern, if no incident occurs.  

The developed module to cluster the days into different groups as mentioned above gives 

analysts the option of specifying the number of clusters that derive from the analysis. Figure 4-1 

shows the results of applying the data selection procedure to a set of 40 days using different 

numbers of clusters. The initial dataset contains weekdays, weekends, and days with incidents, 

bad weather, special events, and/or detector malfunctions. Clearly, the greater the number of 

clusters used, the more homogeneous each cluster will be. However, too many clusters will not 

be useful since in most cases the aim of the analyst is to identify major differences in the 

patterns, and thus be able to simulate a limited number of patterns.  Figure 4-1 shows the results 

of the clustering when specifying two, four, and ten as the number of patterns resulting from the 

clustering procedure. As can be seen from Figure 4-1(a), specifying two patterns is not sufficient, 

since the algorithm basically classifies the days into a weekday and a weekend pattern. Figure 4-

1(b) shows the results of requesting four patterns to be produced. The procedure was able to 

classify the patterns in two different weekday clusters. The first cluster from the left in Figure 4-

1(b) represents weekdays with higher demand compared to those days represent by the second 

pattern from the left in the figure. The third pattern from the left represents incident days and the 

fourth pattern represents weekends. Figure 4-1(c) shows the results of the analysis when ten 

patterns are specified. By examining the resulting patterns and the associated information, the 

analyst can determine which cluster to use as a cluster for typical days that are expected to have 

similar traffic patterns to that of the incident day, if no incident occurs  It is interesting to note 
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that the second pattern from the left in Figure 4-1(c) does not have any detector measurements. 

These patterns represent days in which the detection station at this location malfunctioned. More 

details about the clustering procedure and the associated tool developed to facilitate the 

implementation of the procedure can be found in the Hadi et al. (2010). 

 

(a) Two clusters. Vertical axis is traffic volume per 5 min and horizontal axis is time in minutes.  

 

(b) Four clusters. Vertical axis is traffic volume per 5 min and horizontal axis is time in minutes. 

 

(c) Ten clusters. Vertical axis is traffic volume per 5 min and horizontal axis is time in minutes.  

FIGURE 4-1 Clustering Results Using Different Numbers of Clusters 
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4.3.2. Diversion Rate Estimation 

To estimate the diversion rate, the methodology requires calculating the average demands 

for the days that are in the cluster selected for use to represent a typical day, as explained in the 

previous step. These demands are assumed to represent the demands during the no incident day, 

if no incident occurs. After the typical days are obtained, as described above, it is possible to 

construct the cumulative volume curves for these days, as shown in Figure 4-2, and to estimate 

the diversion rates based on the traffic demands, as described below. 

The accumulations of volumes used in the calculation should include the period while the 

queue exists, as shown in Figure 4-2. Figure 4-2(a) shows that under the no diversion conditions, 

the cumulative arrival and departure volumes by the end of the incident will be the same. Figure 

4-2(b) shows that if diversion occurs, the cumulative arrival volume will be higher than the 

cumulative departure volume by the end of the incident. The difference between the two 

cumulative volumes represent the number of vehicles diverted. 

 

FIGURE 4-2 Cumulative Volume Curves under Diversion and no Diversion Scenarios 

 For each incident selected from the incident database, the cumulative traffic volumes 

based on detector data aggregated at five-minute intervals were calculated for each traffic 

detector station and for both the average typical non-incident days and incident days. Traffic 

diversion was then estimated as the cumulative volume difference between the average normal 

traffic day and the incident day over the analysis period. The calculation method is explained 

below. 
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Let VijN denotes the volume for time interval ‘i’ at detector station ‘j’ during normal 

traffic day conditions and VijI, denote the volume for the time interval ‘i’ at detector station ‘j’ 

during a specific incident day conditions. Then: 

        Diversion Rate (%) due to the incident =   100×
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One of the challenges of the methodology described above is to identify the analysis period for 

which the cumulative curve has to be calculated. As described above, the period should include 

the period while the queue exists. This study has evaluated several criteria for analysis time 

period selection and has chosen to use the time period from the detection of an incident to fifteen 

minutes after all travel lanes are reopened. If the lane reopen timestamp is missing, the 

calculation will use one hour after the incident detection as the end of the analysis time period. In 

this study, three immediate upstream detectors and the first downstream detector are chosen for 

the normal day and incident day volume calculations. However, the analysts can select other 

detectors based on their requirements. Statistical Analysis 

Once the diversion rates for each selected incidents are calculated, they are saved to a database 

together with incident and traffic attributes during the incident for statistical analysis. Regression 

analysis allows the development of models to estimate the influence of incident and traffic 

attributes on diversions. In linear regression, the dependent variable Y is a linear combination of 

the parameters, which can be expressed as follows: 

i22110 e...XXY ++++= ααα                                             (4-2) 

 In Equation 4-2, Y is the dependent variable, Xi are the independent variables, iα  are the 

coefficients, and ei is the residual (error term). It should be noted that in multiple linear 

regression, functions or transformations of the independent variables are permitted. In linear 

regression analysis, the goal is to minimize the s used as the goodness-of-fit measure for 

regression analysis. The R2 is defined as one minus the ratio of the sum of squared estimated 

errors to the sum of squared deviations about the mean of the dependent variable. It takes a value 

between zero and one, and a higher value of R2 indicates that the developed regression model is 

able to better explain the variation in the dependent variable. Linear regression analyses assume 
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that the dependent variable is normally distributed. This assumption can be evaluated using the 

Analysis of Variance (ANOVA) table. The ANOVA analysis outputs a p-value, which is the 

smallest level of significance at which the null hypothesis can be rejected. In addition, there is a 

possibility that two identified independent variables may be closely related, thus resulting in a 

multi-collinearity problem. The Variance Inflation Factor (VIF) values for the independent 

variables are chosen to evaluate the collinearity in the regression analysis. Overall, the R2, 

standard error, F-statistics, p-values, t-values, and VIF values are used to measure the quality of 

regression analysis. 

 

There are two categories of variables that need to be retrieved for use in the regression 

analysis. One category include incident and traffic condition attributes that are directly measured 

by the ITS system and can be extracted from the SunGuide incident and traffic databases. The 

second category includes estimates of queues and delays that were calculated using the 

deterministic queuing equation in this study. Two models were developed in this study based on 

the incident attributes. The first includes the two categories of attributes mentioned above and 

the second does not include the estimates of queuing and delay attributes to determine if the 

performance of the model improved with the inclusion of the queuing and delay attributes 

.  

As stated above, the queuing attributes were calculated using the deterministic queuing 

theory equations. The calculated attributes include the time duration in queue, maximum queue 

length, maximum individual delay, and total delay. The used equations can be found in standard 

traffic flow theory text book but are listed below for convenience. 
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where,  
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Qt  =  time duration in queue, in hours; 

 MQ   =  maximum queue length in vehicles; 

 Md  =  maximum individual delay in minutes; 

 TD  =  total delay in vehicle-hours; 

 Rt   =  incident lane blockage duration; 

 µ   =  capacity in vph; 

 Rµ   =  reduced capacity under incident condition in vph; and 

 λ  =  arrival rate in vph. 

 

 To be able to solve Equations 4-3 through 4-6; the arrival rate, incident lane blockage 

duration, freeway capacity, and the reduced freeway capacity under incident conditions must be 

known. The approach to estimate the arrival rate has been discussed previously in this chapter. 

The Highway Capacity Manual (HCM) procedures are used to calculate the freeway capacity for 

the incident site with no incident. The remaining capacity during lane blockage incidents was 

calculated using capacity reduction factors presented HCM procedure. Table 4-1 shows the 

available capacity under incident conditions for different lane blockage conditions according to 

the HCM.  

 
TABLE 4-1 Proportion of Freeway Segment Capacity Available under Incident Conditions 

Number of Freeway Lanes by 

Direction 

One Lane 

Blocked 

Two Lanes 

Blocked 

Three Lanes 

Blocked 

3 0.49 0.17 0 

4 0.58 0.25 0.13 

5 0.65 0.4 0.2 

 

4.4. Process Automation 

The manual application of the method described above for calculating diversion rates is 

time-consuming. Therefore, the proposed methodology was implemented as part of a computer 

program to automate the process. This computer program contains three modules: the first is to 
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select potential incidents to include in the analysis based on the criteria identified by the user. 

The selection criteria can consider attributes such as the analysis corridor(s), direction of the 

freeway, day of year, time of day, incident type, and lane blockage condition. The second 

module implements the pattern identification algorithm used to determine the typical no-incident 

day traffic volumes. The third module performs the actual traffic diversion rate calculation based 

on the extracted information.  

 Figure 4-3 shows the incident selection interface. For each selected incident, relevant 

attributes from the SunGuide database are displayed for the analysts to identify potential “good” 

candidates to include in the analysis. These attributes, as shown in Figure 4-4, include the 

timestamps for the activities of different responding agencies, number of lanes blocked, and 

other associated attributes. In addition, the visualization of volume drops during incident also 

serves as a check of the impacts of each selected incident to allow the analyst to determine if it 

should be included in the analysis. As an example produced using the developed tool, Figure 4-5 

shows the volumes extracted for an analysis period for three upstream and three downstream 

detectors.  When the analyst decides to proceed with calculating the diversion rate for a given 

incident, the next step is to identify the regular day traffic demands. Figure 4-6 shows the traffic 

pattern selection interface. At this step, the user will have a chance to adjust the definition of the 

analysis period for each incident. The default definition of the analysis time period is from the 

start of the incident to fifteen minutes after all travel lanes are reopened or one hour after 

incident start when the lane reopen timestamp is missing. It is recommended that general users 

should stick to the default analysis time period definition. The user is also able to adjust the 

number of patterns, which is needed as described in Section 4.3.1. Figure 4-7 shows seven 

generated traffic patterns. In this case, patterns 3 and 4 are selected to represent average typical 

day conditions. The demands of all days in these two clusters are averaged and used as a typical 

no-incident regular day traffic demands. Finally, the developed tool uses Equation 4-1 to 

calculate the diversion rate and result is shown as in Figure 4-8. 
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FIGURE 4-3 Diversion Rate Calculation User Interface 

 

 

FIGURE 4-4 Attributes for a Selected Incident 
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FIGURE 4-5 Volume Charts for Adjacent Detectors 

 

 

FIGURE 4-6 Pattern Selection 
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FIGURE 4-7 Patterns for Normal Day Traffic Volume Identification 

 

 

FIGURE 4-8 Diversion Rate Calculation Results 
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4.5.  Case Study 

The corridor chosen for this study is a East-West section of state road 826 (SR-826) in 

Miami-Dade County, Florida, which includes six interchanges and begins west of the NW 67th 

Avenue interchange and ends east of the NW 12th Avenue interchange with a total length of 6.5 

miles. The study area is shown in Figure 4-9. The SR-826 East-West section was also used in 

case studies in other chapters of this document. The case study segment includes a total of five 

DMS signs, 50 true presence microwave detectors, and seven CCTV cameras.  This corridor is 

heavily congested in both directions during the morning and the evening peak hours. However, 

the morning peak is predominant in the eastbound (EB) direction during the hours from 6 A.M. 

to 8 A.M. for workdays and the evening peaking occurs in the westbound (WB) direction from 3 

P.M. to 5 P.M. during workdays. There is a parallel frontage road to this freeway segment in 

both directions that serves as an alternate route during incident conditions. Another two major 

diversion routes are through the use of NW 57th Avenue and NW 27th Avenue interchanges, 

which some motorists use to access Florida’s Turnpike and Miami Gardens Drive north of the 

corridor in case of incident.  

Traffic data to estimate the diversion rates were obtained from the STEWARD database. 

All incidents that occurred from January to December 2009 within the study area were reviewed 

and incidents that resulted in at least one-lane blockage that lasted for a time period greater than 

30 minutes were identified and used in the analysis. Any other criteria can be set by the analysts 

depending on the analysis requirements. 
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FIGURE 4-9 Study Area for Traffic Diversion Rate Calculation 
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In this study, the immediate three upstream detectors and the first downstream detector 

were selected to determine the diversion rate. The volumes of these four detectors were used to 

calculate the diversion rate. Figure 4-10 shows the calculated diversion rate distribution for the 

analyzed time period. It shows that for the selected incidents, diversion rates range from about 

0% to 58.5%,. About half of the examined incidents had a diversion rate of 10% or less and 

about two-third of the incidents had a diverson rate less than 20%. The average diversion rate 

was 12.97% and the 85 percentile value was 25.01%. 
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FIGURE 4-10 Diversion Rate Distributions for the Analysis Period 

4.6. Statistical Analysis Results 

Diversion rates calculated as described in the previous sections are stored in a database 

table and their associated incident attributes are used for the model development. Two linear 

regression models were developed in order to identify the impacts of the influencing factors: one 

with derived factors such as the estimated arrival rate, maximum individual delay, and the queue 

length, and another model with only factors that are directly retrieved from the SunGuide 

database. The developed model with derived factors is listed below as Equation 4-7: 
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LM = -0.138 + 0.045×IfDaylight + 0.025×LN(ArrivalRate)_ + 0.002×MaxDelay + 

0.043×QueueLen  (4-8) 

Where,  

IfDaylight =  if an incident occurs under daylight condition; 

ArrivalRate =  the estimated arrival rate based on historical data during incident time 

period, the unit is vph; 

MaxDelay = the maximum individual delay calculated from queuing theory, the unit is 

minute; and 

QueueLen =   the length of queued vehicles calculated from queueing theory, the unit is 

mile. 

All identified variables are significant at the 0.05 confidence level. The values of t-

statistics are all greater than 2.0. The R2 for the calibrated model is 0.548 with a standard error of 

0.09. The F value for this model is 11.415. 

The developed model shows that daylight versus night condition, level of traffic demand, 

individual delay in the queue, and queue length are significant factors affecting the diversion 

rate. The model shows that the diversion rate is much higher during the daytime than during the 

nighttime. Also, during peak hours with higher demands, people are more willing to divert. 

Severe incidents with long queues and long delays also cause more people to divert. 

The regression model with factors directly retrieved from the SunGuide database is 

shown below as Equation 4-8: 

LM = -0.092 + 0.101×IfDaylight - 0.066×Weather + 0.002×BlockagePercent + 

0.031×LN(Duration) (4-8)  

Where, 

IfDaylight   =  if an incident occurs under daylight condition; 

Weather   =  if the pavement is dry (0) or wet (1); 

BlockagePercent  = how many percent of the travel lanes are blocked; and 

Duration   =   the incident duration. 

 

All identified variables are significant at the 0.05 confidence level. The values of t-

statistics are all greater than 2.0. The model can only achieve R2 value of 0.345. The F statistics 

is 7.110.  
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The second model confirmed that drivers are more willing to divert during daytime and 

the weather condition is good. The longer the incident duration and the higher the percent of 

travel lanes are blocked, the more travelers will divert. The lower R2 of the second model 

compared to the first model illustrates that the use of queuing theory to estimate the queue and 

delay due to the incident and use these attributes as independent variables in regression model 

allows the derivation of a better regression model. 

4.7. References 

Alvarez, P., M. Hadi, and C. Zhan. Using Intelligent Transportation Systems Data Archives for 
Traffic Simulation Applications, Journal of the Transportation Research Board (in press), 
Washington, DC, 2010. 
 
Barfield, W., Conquest, L., Spyridakis, J., and Haselkorn, M. “Information Requirements for 
Real-Time Motorist Information Systems.” Proceedings of the Vehicle Navigation and 
Information Systems Conference (VNIS), New York, IEEE, 1989, pp. 101-112. 
 
Benson, B.G. Motorist Attitudes about Content of Variable-Message Signs. Transportation 
Research Record, No. 1550, 1996, pp. 48-57. 
 
Chatterjee, K., Hounsell, N.B., Firmin, P. E., and Bonsall, P. W. Driver Response to Variable 
Message Sign Information in London. Transportation Research Part C, Vol. 10, No. 2, 2002, pp. 
149-169. 
 
Cragg, C. and Demetsky, M., Simulation Analysis of Route Diversion Strategies for Freeway 
Incident Management. Virginia Transportation Research Council, Charlottesville, Virginia, 
1995. 
 

Hadi, M., C. Zhan, P. Alvarez. Traffic Management Simulation Support. Final Report, Prepared 

for Florida Department of Transportation by Lehman Center for Transportation Research, 

Tallahassee, FL, September 2010. 

 
Huo, H. and D. Levinson, “Effectiveness of VMS Using Empirical Loop Detector Data”, 
California PATH Working Paper, UCB-ITS-PMP-2006-4. 
 
Huchingson, R. D. and C.L. Dudek, “Delay, Time Saved, and Travel Time Information for 
Freeway Traffic Management,” Journal of the Transportation Research Record, No. 722, TRB, 
National Research Council, Washington, D.C., 1979, pp. 36-40. 
 



Decision Support Tools to Support the Operations of TMCs 

 94 

Khattak A.J., J. L. Schofer & F. Koppelman (1993), “Commuters' Enroute Diversion and Return 
Decisions: Analysis and Implications for Advanced Traveler Information Systems”, 
Transportation Research.-A, Vol.27A, No.2, pp.101-111. 
 
Knoop, V.L., Hoogendoorn, S.P. and Van Zuylen, H.J. Route Choice Under Exceptional Traffic 
Conditions. International Conference on Evacuation Management, 23-25 September 2009, The 
Hague, the Netherlands. 
 
Luk, J. and Yang, C., Comparing Driver Information Systems in a Dynamic Modeling 
Framework. Journal of Transportation Engineering, Vol. 120, Issue 1, Jan/Feb 2003 p.p. 42-50. 
 
Madanat, S., Yang, C.Y., and Yen, Y.M. Analysis of Stated Route Diversion Intentions under 
Advanced Traveler Information Systems Using Latent Variable Modeling. Transportation 
Research Record, No. 1485, 1995, pp. 10-17. 
 
Peeta, S., J.L. Ramos, and R. Pasupathy, “Content of Variable Message Signs and On-line Driver 
Behavior,” Transportation Research Board 79th Annual Meeting, Washington DC, January, 
2000. 
 
Srinivasan, K. and A. Krishnamurthy, “Role of Spatial And Temporal Factors in VMS 
Effectiveness Under Non-Recurrent Congestion,” Paper Presented at the 2003 Annual Meetings 
of the Transportation Research Board, Washington, DC, 2003. 
 
Tarry, S., and Graham, A.. The Role of Evaluation in ATT Development. Traffic Engineering 
and Control. Vol. 36, No. 12, London, England, 1995, pp. 688- 693. 
 
Wardman M., P.Bonsall, and J.Shries. “Driver Response to Variable Message Signs-A Stated 
Preference Investigation, Transportation Research-C, Vol.5, pp389-405. 
 

 

 

 



Decision Support Tools to Support the Operations of TMCs 

 95 

5. Estimation of Time Lag Between Incident Occurrence and 
Recording 

5.1. Introduction  

One of the most critical functions of traffic management centers (TMCs) is the support of 

incident management operations. In recent years, traffic management agencies (including FDOT 

TMCs) have started maintaining detailed and accurate archives of their incident management 

operations. The availability of this data has allowed the identification of critical parameters of 

incident management operations and the factors influencing these parameters. This can and has 

been used to assess incident impacts and the effectiveness of incident management programs,  in 

addition to the development of decision support tools to support the planning, design, and 

operations of incident management programs.  

Figure 5-1 shows the incident timeline as defined by the FDOT.  An assessment can be 

made of the incident management operations based on the time consumed to accomplish each of 

the incident management processes shown in Figure 5-1. One of these processes is incident 

detection. The incident detection time is defined as the time from the occurrence of the incident 

to the time when the first incident management agency is notified of the incident occurrence. 

However, this time cannot be estimated based on incident management data. This is because the 

first time that the incident appears in the TMC incident management database is when the TMC 

is notified, which is the time that the TMC operators become aware of the incident at a 

minimum, a few minutes after the incident actually occurs. Incidents are detected or reported to 

the TMC through different sources including service patrols, CCTV cameras, enforcement 

agencies (in the case of Florida state roads, the Florida Highway Patrol), incident detection 

alarms based on detector data generated by the SunGuide software, and/or other sources. There 

have been no good estimates of the time lag between incident occurrence and TMC recording of 

the incident. This time lag is referred to in this study as the incident recording time lag. This 

measure is important because the longer it takes for an agency to record the incidents in its 

database, the shorter the calculated incident duration will appear based on analyzing this 

database, which is obviously not correct. The resulting calculated time is biased against the 

agencies that record the incident occurrence in their databases earlier. In addition, the incident 

recording time lag reflects the incident detection time by the TMC, which is an important 
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performance measure of incident management operations that should be estimated and kept track 

of.  

 

FIGURE 5-1 The Incident Time Line as Defined by the Florida Department of Transportation 

 

Archived traffic detector measurements provide an additional source of data that can be 

used in estimating the incident recording time lag and the associated influencing factors. This 

study attempts to develop a method to determine the incident recording time lag based on a 

combination of detailed traffic detector and incident management databases. The methodology 

will allow better assessment of the time needed to detect incidents by TMC, the factors that 

influence this time, and ways to shorten this time. Furthermore, it will provide for a better 

estimation of incident duration for use in the calculation of incident impacts. 
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5.2. Literature Review  

Most existing studies on the estimation of incident durations have calculated the incident 

duration as the time from the TMC notification to the time the incident is cleared, with no 

consideration to the incident recording time lag (Wang 1991, Ozbay and Kachroo 1999). 

Similarly, this time lag has generally not been considered, or roughly estimated, in studies 

conducted to estimate the benefits of incident management strategies (Levinson and 

Parthasarathi 2001, Khattak and Rouphail 2005, Guin et al. 2007, Hadi et al. 2008).  

Stamatiadis et al. (1998) evaluated a service patrol program in Massachusetts. The study 

estimated that the incident detection/response time on average is 10 minutes with the program 

and 25 minutes without the program. The time with the program was estimated based on the 

average route length and the average travel speed through the congested area of the service 

patrol. The detection and response time with no service patrol program was estimated based on 

the state police patrol route, the average travel speed through the congestion area, and the 

estimated percentage of incidents that are detected based on motorist calls.  

Nam and Mannering (2000) applied hazard-based duration models to estimate the time it 

takes to detect and report, respond to, and clear incidents based on various influencing factors. 

The average incident detection/reporting time was estimated to be 12.2 minutes in 1994-1995 

with 56% of the incidents having detection/reporting time of less than 5 minutes. The incident 

detection/reporting duration was measured from the time that an incident occurs until the time it 

has been reported to the incident response team. The study, however, did not discuss how it was 

able to identify the time at which the incidents occur. 

Martin et al. (2001) presented a comprehensive review of previous studies that tested 

automated incident detection algorithms based on inductive loop detectors. The conclusion was 

that for most algorithms, the detection time ranges from 30 seconds to more than five minutes, 

with typical times being about two minutes. However, the study pointed out that these algorithms 

produce a large number of false alarms, and do not perform well with incidents that have low 

impacts on traffic, and cannot detect shoulder incidents. Hall et al. (1993) evaluated the 

McMaster algorithm in Toronto and reported that operators can detect incidents on an average of 

two minutes before the automated algorithm. Stephanedes et al. (1993) reported that in many 

cases, the TMC operators were able to detect incidents based on watching closed circuit 

television (CCTV) videos before an automated algorithm was able to do so.  
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Mussa and Upchurch (2001) used simulations to determine the effects of varying the 

number of people with cellular phones who are willing to report incidents on the detection time. 

The study concluded that detection based on motorist calls is better than using automated traffic 

detection algorithms based on traffic data. If 1% of drivers called to report an incident, the study 

estimated that 80% of the incidents would be detected within five minutes. If the percentages 

increased to 10%, all incidents would be reported within 1.5 minutes.  

The studies above suggested that incident detection based on CCTV cameras, motorist 

calls, and/or traffic detectors can be achieved in a relatively short period of time, or possibly less 

than five minutes. However, real-world data have not been adequately used to determine the 

incident detection/notification times for different scenarios. For this reason, in most cases, 

analysts have used the notification time (the first time that the operator becomes aware of the 

incident) rather than the occurrence time to represent the start of incidents. In other cases, 

analysts have added arbitrary lengths of time to account for the difference between the detection 

and notification time due to the lack of this information (Hadi et al., 2008).   

5.3. Methodology  

As stated earlier in this document, the objective of this study is to develop a methodology 

to determine the TMC recording time lag statistics under different conditions. With the 

developed methodology, data from traffic detectors upstream of the incident locations are 

analyzed for a time period starting at least 30 minutes before the timestamp at which the incident 

first appears in the incident management database (the TMC notification time). The impact of 

incidents on the first detection station upstream of the incident location is identified by analyzing 

the drop in speed and volume and increase in the occupancy based on the 20-second detector 

measurements stored in the traffic detector database. This time is actually not the time at which 

the incident occurs, but the time that the queuing shockwave from the incident location reaches 

the first upstream detection station. Thus, a correction factor needs to be applied to account for 

the time that it takes the shockwave to reach the detector, as described later in this section.  

In a number of FDOT districts, the longitude and latitude of each incident are measured 

by the global position systems (GPS) equipment in the service patrol vehicles and uploaded 

automatically to the SunGuide incident management database. The location of each detection 

station together with the monitored corridor name and direction of travel are stored in the 
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SunGuide TSS database. The longitude and latitude of incidents and detectors are used in this 

study to identify the detectors affected by the incidents, the incident location, and the distance 

between the incident and upstream detectors. This distance is needed to calculate the time 

required for the queuing shockwave to arrive at upstream locations. The longitude and latitude of 

detectors and incidents are then imported to a Geographical Information System (GIS) 

application that allows the identification of the required information mentioned above. 

In the discussion below, the timestamp t1 is defined as the time at which the speed drops 

due to the arrival of the queuing shockwave at the first detection station upstream of the incident 

location. The actual time t0 at which the incident occurs can then be calculated as t1 minus the 

time it took the shockwave to travel from the incident location to the first upstream detection 

station. The timestamp t2, is the timestamp that the incident is reported to TMC and recorded in 

the SunGuide incident database. Although this is referred to as the detection time in SunGuide, it 

is the time that the TMC is actually notified of the incident. The difference between t2 and t0 is 

the TMC recording time lag. 

. Estimating t0 as discussed above requires the calculation of the time taken for the 

shockwave to arrive at the first upstream detection station. To perform this calculation, the 

estimation of the shockwave speed is needed. The shockwave speed was calculated based on the 

flows and densities of these detectors using the following equations (May 1990): 
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where 

 

 U12      =  the shockwave speed in mph, 

qi and qj  =  the flow rates in veh/hr of the two detection stations immediately upstream 

of the incident location (these stations are referred to as the first and 

second upstream detectors in this report),  

ki and kj    =  the density of the two upstream detection stations in veh/mile/lane,  
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O i    =  the occupancy of detector i,  

Lv     =  the average length of the vehicle in ft, and 

Ld                  =  the length of the detector in ft. 

 

The TMC recording time lags were identified for a sample of incidents selected for use in 

the analysis. The time lags together with the attributes of the incidents were used as inputs to 

regression analysis in order to identify the influencing factors that impacts the time lags. Before 

conducting the regression analysis, the incidents were categorized by the detection agencies and 

the regression was performed for each category separately. This was done since the detections of 

incidents by different sources are expected to be influenced by different factors. In this study, 

incidents were classified into three categories by three different detection agencies. These 

agencies are Florida Highway Patrol (FHP), Closed Circuit Television (CCTV) cameras, and the 

service patrol vehicles (called Road Rangers in Florida). 

5.4. Applications and Results  

The methodology described in the previous section to obtain the TMC recording time lag 

was tested for lane blockage incidents on two corridors in Florida. The two corridors are 

managed by two different FDOT districts.  It was found that most lane blockage incidents are 

detected by TMC operators watching traffic speed maps and CCTV cameras, service patrol 

vehicles, and notifications from Florida Highway Patrol (FHP), the enforcement agency on the 

corridors. It should be noted that most motorist calls reporting incidents are routed to the FHP. 

Thus, these calls contribute to the detection of incidents, but the detections of these incidents are 

recorded in the database as FHP notification events.   

For the first corridor, incident and traffic detector data were obtained for the period from 

January 2008 to May 2009. A total of 73 lane blockage incidents were used in the analysis of this 

corridor. For the second corridor, a total of 85 lane blockage incidents were used in the analysis. 

This section first presents a detailed description of the application of the TMC recording time lag 

methodology to an incident on one of the two investigated corridors. Then, it presents an 

illustration of how the methodology was applied to obtain information regarding the detection 

time of lane blockage incidents. 
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An accident with two blocked left lanes on December 23, 2008, was first recorded in the 

SunGuide software at 18:03:31, which is referred to as the notification time in the software. 

According to the methodology described in the previous section, speed data for the first and 

second upstream detection stations were analyzed starting at least 30 minutes before the first 

timestamp provided in the incident database. Based on the longitudes and latitudes of incident 

and detector locations, the first upstream detector is located a 0.3-mile distance upstream of the 

incident and the second upstream detector is positioned at a 0.45-mile distance. Figure 5-2 shows 

a plot of speed data for the first upstream detector, measured every 20 seconds between 17:30 

and 19:00.  

Figure 5-2 presents the lane speed information at the first upstream detector of the 

incident location. The lane selection is determined by the incident condition. Figure 5-3 shows 

lane speed data for the second upstream detector, which is located 792 feet upstream of the first 

detector. As can be seen from Figure 5-2, the timestamp of speed reduction due to the incident 

was identified to be 17:50:30. The speed, traffic flow rate, and occupancy at this timestamp were 

10 mph, 1260 veh/hr, and 38%, respectively. The previous 20 second timestamp measurements 

of speed, traffic flow, and occupancy were 52 mph, 1620 veh/hr, and 9%, respectively. This 

indicates the sharp increase in congestion on this detector due to the arrival of the queuing 

shockwave from the downstream incident location. 

The shockwave speed was calculated using Equations 1 and 2. In this case, based on the 

data of the first upstream detector, k1, k2, q1, and q2 values were estimated to be 19 veh/mi/ln, 

80.3 veh/mi/ln, 1620 veh/hr, and 1260 veh/hr, respectively. The estimated queuing shockwave 

speed based on this calculation is 5.87 mph. The calculated queuing shockwave speed combined 

with the distance between the incident and the first upstream detection station were used to 

estimate the time required for the queuing shockwave to reach the upstream detector. This time 

was estimated to be 183 seconds. The time between the first timestamp of the incident in the 

incident database (t2) and the time of the drop in speed at the upstream detector (t1) was 

calculated to be 13 minutes, based on the data presented earlier in this section. Thus, the total 

TMC recording time lag (t2-t0) is estimated to be 16 minutes. It should be mentioned here that 

this lag time is significantly higher than the average time calculated for the lane blockage 

incidents in the region. It is presented here to illustrate the fact that some incidents may take long 
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times to be input to the database.  The agency can investigate these incidents to determine why 

they took longer times to detect. 

Other important timestamps from the incident database are superimposed over the first 

and second upstream detector data in Figures 5-2 and 5-3, respectively. Additional important 

information can be obtained from combining incident and traffic detector data. It can be shown 

that the speed during queuing conditions upstream of the incident fluctuated between 0 and 10 

mph with an average of about 5 mph until the blocked lanes were opened. For this incident, the 

TMC operator recorded the lane re-opening time to be 18:31:25 in the SunGuide software. 

Figure 5-2 indicates that the speed at the upstream detection station started to increase around 

that time. This comparison between the increase in the speed and the time for lane reopening as 

entered by the operator can be used to further check the accuracy of the operator inputs for 

blocked lane reopening timestamps. 
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FIGURE 5-2 Speed Data for the First Upstream Detector 
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FIGURE 5-3 Speed Data for the Second Upstream Detector 

Figures 5-2 and 5-3 also show the timestamps for the arrivals of the service patrol, fire 

truck, and FHP. As stated above, it was observed that this incident has higher detection time than 

other incidents on the corridor. In addition, the service patrol arrived at the incident site 

unusually late when compared with their arrivals to other incident sites. This type of information 

can be used by TMCs to explore the reasons for inefficiencies in the operations of TMC 

operators, service patrols, and communications with other incident response agencies. 

Figure 5-4 shows the speed data for the detector located in the opposite direction of travel 

from the direction of the incident discussed above. Figure 5-4 covers the same period as that of 

Figure 5-2. This figure presents how combining incident and traffic data as proposed in this 

study allows the quantification of the drops in speeds for the traffic traveling in the opposite 

direction. This quantification has been very difficult to achieve in the past. Speed variations in 

Figure 5-4 indicate that a severe lane blockage incident not only affects the traffic conditions in 

its direction, but also has significant impacts on the speeds of the vehicles in the opposite 

direction, with a drop in speeds from 10 to 20 mph. It can also be noted from Figure 5-4 that the 

speed of the vehicles in the opposite direction started to decrease at almost the same time of the 

arrival of the fire truck from the other direction identified, as based on Figure 5-2 data. This 

indicates that the motorists traveling in the opposite direction may have started getting distracted 
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and slowing down due to the fire truck’s presence. It should be noted that this segment of the 

corridor has a relatively low median barrier, allowing motorists to see the opposing direction of 

travel. However, at other locations of the corridor with higher medians, it was observed that the 

effect on the opposing traffic is lower or non-existing.   
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FIGURE 5-4 Speed Data for the Detector in the Opposite Direction 

5.5. Process Automation  

The time lag calculation method previously described requires matching incidents with 

traffic detector data, which is a time-consuming task if performed manually. Thus, the proposed 

methodology was implemented as part of a computer program to automate the process. This 

computer program consists of two parts, a user interface and an automatic speed falling 

identification algorithm. The speed falling identification algorithm can also be extended for use 

with volume and/or occupancy data, as needed. Figure 5-5 shows the user interface of the 

computer program. This interface allows the user to specify incident selection criteria, such as 

the corridor, incident location, direction, incident date, incident time, incident type, and lane 

blockage condition. Based on the selected criteria, qualified incidents will be extracted from the 

incident database. For each selected incident, the upstream and downstream detectors will also 
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be automatically identified. The user will then have the option to double-click the selected 

incident to display attributes such as incident date, time, detection agency/source, number of 

lanes blocked, roadway condition, and responding agency arrival and departure times. Figure 5-6 

shows the interface for displaying these incident attributes. 

 

FIGURE 5-5 Main User Interface for Incident Detection Program. 

 

FIGURE 5-6 Interface for Displaying Attributes of Selected Incidents. 
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After the incidents are selected for the analysis, the next step is to apply an automatic 

speed falling identification algorithm to determine speed falling points for the upstream 

detectors. As explained before, the algorithm can also be applied to traffic volume or occupancy 

data, if needed. The user can request the display of incident data around the incident time for 

each lane of the two immediate upstream detection stations, as shown in Figure 5-7. The user can 

then select the lane that has the earliest and clearest change in performance measures for use in 

the analysis. Figure 5-8 shows the results of the calculation of the time lag for one incident. 

 

 
(a) First Upstream Detector 

 

 
(b) Second Upstream Detector 

FIGURE 5-7 Automatic Display of Data from Upstream Detectors 

 

FIGURE 5-8 Final Calculation Results 
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5.6. Statistical Analysis  

Regression analysis results show that for FHP detected incidents, the time lag is lower 

during daylight conditions and when the lane blockage incident is more severe (more lane 

blockage). The results probably reflect the higher potential for receiving calls from multiple 

travelers during daylight conditions and with severe lane-blockage incidents. For CCTV detected 

incidents, the time lag is higher during the peak periods and during rainy weather conditions, and 

lower for daylight (compared to night) conditions, full lane blockages, and when a higher 

number of vehicles are involved in the incident. These results indicate the higher possibility for 

traffic operators to identify incidents from CCTV cameras during dry and clear weather, daylight 

conditions, full blockage, and high number of involved vehicles. During the peak periods, the 

time lag is greater, probably due to the increased workloads of the operators.  

The R2 values of the developed regression models for FHP-detected incidents and CCTV-

detected incidents were 0.882 and 0.412, respectively. Although all independent variables were 

significant at the 5% level, it was not possible to develop an acceptable regression model for 

incidents detected by the service patrols. It was expected that for these incidents, the main 

influencing factor on incident detection time, and thus on the time lag, is the change in the 

schedule of service patrol during night conditions (lower number of vehicles at night). To verify 

this difference, a statistical test was conducted to determine if the incident detection durations 

during night conditions were significantly higher than those during daylight conditions. In this 

case, a one-sided t-test was used to determine if the mean time lag is higher during night 

conditions for service patrol-detected incidents. It was found that the difference was significant 

and that the null hypothesis could be rejected at the 95% level. 

Table 5-1 shows the statistical summary of incident detection times for one of the 

corridors. This summary serves as an illustration of the capability of the developed algorithms 

and gives a general idea of the magnitude of incident detection time lags. The table shows that 

the average detection time lag for all 85 cases on this corridor was 3.94 minutes with a standard 

deviation of 2.91 minutes. The maximum incident detection time lag was 13.1 minutes and was 

for an incident detected using CCTV cameras during daylight conditions.  
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TABLE 5-1 Statistics of Incident Detection Time for One of the Investigated Corridors 

Category 

 

 

Sample Size 

 

 

Mean (min) 

 

 

Standard 

Deviation 

(min) 

 

Median 

(min) 

 

 

Min Incident 

Detection Time 

(min) 

 

Max 

Incident 

Detection 

Time 

(min) 

RR (Daylight) 14 3.06 1.13 3.3 1 4.5 

RR (Dark) 6 4.04 0.61 3.92 3.5 4.7 

FHP 

(Daylight) 11 3.49 1.85 3.3 0.5 6.8 

FHP (Dark) 5 3.5 0.48 3.3 3.1 4 

CCTV 

(Daylight) 38 4.8 3.27 3.4 0.5 13.1 

CCTV (Dark) 11 4.75 2.12 3.5 2.5 8.7 

All Cases 85 3.94 2.91 3.5 0.5 13.1 

5.7. Conclusions  

This study has demonstrated that combining incident management and traffic detector 

databases allows the identification of information that cannot be identified based on these two 

data sources alone. A methodology has been developed in this study to estimate the TMC 

incident recording time lag, the incident impacts on the speed of the traffic approaching the 

incident location, and the incident impacts on the traffic in the opposite direction based on these 

two data sources. Combining incident management timestamps with traffic detector data can also 

produce valuable information to support various TMC operations. 
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6. Estimation of Secondary Incidents Potential 

6.1. Introduction  

Secondary crashes are generally considered to be crashes resulting from primary 

incidents. They usually occur either at the end of or within the queues that are formed due to 

primary incidents. Secondary crashes have been increasingly recognized as a significant source 

of freeway incidents that can be influenced by traffic management strategies; it is therefore 

important to understand their nature and contributing factors. In general, faster clearance of 

freeway incidents can reduce incident durations, queue lengths, and associated freeway 

congestion levels, thus reducing the potential for secondary crashes. Previous studies evaluating 

the benefits of incident management programs have frequently assumed that these programs can 

reduce the likelihood of secondary crashes (Guin et al. 2007, Hadi and Zhan 2006, Latoski et al. 

1999). To determine the extent of the crash-prevention benefits, however, the likelihood of 

secondary incident occurrence and the factors affecting this likelihood must first be determined. 

Understanding the contributing factors of secondary crashes is also critical to identifying 

potential improvements for incident management strategies. 

Research on secondary crashes has been limited. This is mainly due to the poor quality of 

incident data and the lack of related traffic data necessary to secondary crash identification and 

analysis. In addition, there is no uniform definition of a secondary crash in terms of its spatial 

and temporal relationship to the primary incident. Therefore, it has been difficult to associate an 

initial incident with secondary crashes and to confirm that the first incident was indeed a 

contributor to these subsequent crashes (Moore et al. 2004). 

In past studies, researchers have generally linked secondary crashes to primary incidents 

according to some pre-defined spatial and temporal criteria. The rationale was that a secondary 

crash should take place within a maximum distance upstream in the same direction of travel, and 

within a certain time range of a primary incident. Raub (1997) and Karlaftis et al. (1998) defined 

a secondary crash as any crash that occurs no more than one mile upstream of, and less than 15 

minutes after, an initial incident. Moore et al. (2004) defined these two spatial and temporal 

criteria as two hours and two miles upstream of the initial incident, respectively. 

Hirunyanitiwattana and Mattingly (2006) suggested that the criteria be within 60 minutes and 

two miles upstream of the primary incident. In our previous study (Zhan et al. 2008), a secondary 
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crash is defined as within two miles upstream and 15 minutes after the clearance of the primary 

incident. As can be seen from the above discussion, most previous studies have used fixed spatial 

and temporal threshold values for secondary crash identification. However, there is no agreement 

among them on a single definition of the spatial and temporal boundary criteria. 

One major reason why past studies have used fixed spatial and temporal criteria is that, in 

most existing traffic management databases, real-time traffic information for incident sites is 

usually missing. This makes it difficult to estimate traffic delays, traffic queue lengths, and 

related queue dissipation times for potential primary incidents. Traffic delay is a function of 

incident and roadway attributes including incident duration, traffic volume, and roadway 

capacity with and without incident (Hurdle and Son 2001). Therefore, using simple fixed 

thresholds for secondary crash identification may significantly overestimate or underestimate the 

number of secondary crashes and skew analysis results. This research aims to partially resolve 

this issue by identifying secondary crashes through the combined use of traffic condition 

information and primary incident characteristics. In this research, for each potential primary 

incident, the related hourly traffic volume and incident duration information is retrieved. 

Freeway remaining capacity is then estimated using primary incident lane closure/reopen 

information. After that, maximum traffic queue length resulting from the primary incident is 

estimated using a traffic queuing analysis model. The associated maximum queue dissipation 

time is then computed accordingly. Any crash occurring within the boundary of the estimated 

maximum queue length and dissipation time is linked to the particular primary incident as a 

possible secondary crash. 

This study presents an analysis of secondary crashes using both the traffic incident and 

traffic counts measured using ITS detectors or the FDOT statistics office detectors (FTI 2009). A 

new method for identifying secondary crashes is first discussed herein. This method uses a 

cumulative arrival and departure queuing model to estimate the maximum queue length and 

queue dissipation time from a primary lane-blockage incident. Descriptive statistical analyses are 

then conducted to study the factors contributing to secondary crashes. In addition, secondary 

crash analysis based on the logistic regression model is conducted to estimate the relationships of 

secondary crash likelihood and the contributing factors. Finally, conclusions are drawn based on 

the analysis results. 
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6.2. Data Sources 

Incident records for I-95, I-75, and I-595 stored in FDOT District 4 database from 

January 2005 to January 2007 were used in this study. During the two-year period, FDOT 

District 4 managed 95,844 road assists, which corresponds to 131 assists per day. Among these 

incidents, 7,903 were crashes. During the same time period, 4,435 incidents caused one or more 

lane blockages. In this study, lane blockage incidents serve as a basis for identifying potential 

primary incidents.  One major assumption behind this is that incidents with only shoulder 

blockages usually have minor impacts on traffic. This is especially true when there are more than 

three open travel lanes. In such cases, primary incidents with only shoulder blockages are less 

likely to cause secondary crashes. 

6.3. Secondary Crash Identification 

Shockwave and cumulative arrival and departure curve (queuing) models have been 

widely used in various traffic operations analyses, and have been essential to understanding the 

nature of freeway congestion (Hurdle and Son 2001). Both models are deterministic and attempt 

to estimate traffic delays and queue lengths resulting from freeway congestion. This study 

attempts to use the cumulative arrival and departure curve technique to estimate the maximum 

queue length incurred by lane-blockage incidents. This curve is deemed as the baseline for 

determining the maximum distance for possible secondary crashes. In addition, the associated 

queue dissipation time after a primary incident is estimated to determine the temporal criteria for 

secondary crash identification. 

Figure 6-1 illustrates the dynamic change in the number of vehicles stranded in a queue 

as a result of a freeway incident. When an incident with lane blockage (except for full lane 

blockage, in which case the congested departure rate will be zero) occurs, freeway capacity drops 

significantly. The arrival traffic rate can exceed the remaining capacity of the freeway, resulting 

in a traffic queue for which the number of vehicles will continue to accumulate. As time passes, 

however, the blocked freeway travel lanes will open gradually. This is either because of freeway 

incident management efforts or self-assist actions by stranded travelers. In any case, as blocked 

lanes are opened, freeway remaining capacity will increase dramatically. When an incident is 
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completely cleared, the freeway will be restored to its full capacity. After a recovery period, 

traffic flow will return to normal conditions.  

 

FIGURE 6-1 Cumulative Arrival and Departure Diagram for Incidents with Lane Blockages 

From an initial analysis of incidents, it is determined that the majority of incidents with 

lane blockages are incidents with only one lane blocked, especially during the daytime period 

(6:00 A.M. - 7:00 P.M.). Although the data show that during the night (7:00 P.M. - 6:00 A.M.) 

lane clearance times are usually much higher, they are less likely to cause longer traffic queues 

because traffic volumes are much lower than during the day. The data also reveal that the I-95 

corridor had far more lane blockage incidents during the study period than did the I-595 and I-75 

segments. Historical traffic volume data show that the AADT is about 265,000 for the I-95, 

168,500 for the I-595, and 110,000 for the I-75 segments in Fort Lauderdale, Florida.   

Below is an example of how the calculations of maximum queue length and queue 

dissipation time are conducted. The calculations are for the incidents that had taken place during 

the weekday daytime period on the I-95 corridor with one-lane blockage. 

The I-95 corridor segment in Fort Lauderdale has four travel lanes for both the 

southbound and northbound directions. Historical traffic data were retrieved from the Florida 

Traffic Information (FTI) Database (2006), which is in the Microsoft Access database format and 
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is annually distributed by the FDOT Central Office on a CD-ROM. The traffic data show that 

during the weekday morning peak (AM) period (6:00 A.M. - 9:00 A.M.), the southbound 

average hourly traffic volume is about 7,430 vehicles per hour, which represents heavy 

congestion, particularly when considering the peaking of traffic during these hours. Statistical 

analysis of the SMART database shows that during the A.M. peak period, the average lane 

blockage time for incidents with one-lane blockage on I-95 is 27.98 minutes. Exhibit 22-6 of the 

2000 Highway Capacity Manual (HCM) suggested that the remaining freeway capacity could be 

reduced to only about 58% of the full capacity with one-lane blockage, which was assumed in 

this study to be 2,200 vehicles per hour per lane for the given design conditions. It was also 

assumed that during a major freeway incident, some travelers would divert to alternative routes. 

In this study, the diversion rate was assumed to be 5%. With these assumptions, the maximum 

total number of queued vehicles incurred during an incident on I-95 SB with one lane blocked 

can be calculated as follows: 

  Arrival Rate  = Original Arrival Rate × (1 – Diversion Rate)  

= 7430 × (1 – 0.05)  

= 7059 vehicles/hour 

Departure Rate = Remaining Capacity of Freeway 

   = Full Capacity of One Lane × Number of Lanes × HCM Factor 

= 2200 58.04××  

= 5104 vehicles/hour 

Maximum Queue Length  = (Arrival Rate – Departure Rate) × Duration  

= 
60

69.29)58.0422007059( ×××−  

= 968 vehicles 
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To simplify the calculation of queue length in terms of distance, suppose that all of the 

queued vehicles are passenger cars and that the bumper-to-bumper length (space headway) 

occupied by one vehicle in the queue is 25 ft. The maximum possible queue length in miles can 

be estimated as follows: 

Maximum Queue Length = 25 5280
4

968
÷× = 1.14 miles 

After the blocked lane is cleared, with only shoulder disablement, the freeway can be 

restored to almost full capacity. Thus, the approximate recovery time for queue dissipation can 

be estimated as such: 

Recovery Time = 60
)705942200(

968
×

−×
= 33.34 minutes 

Table 6-1 shows the estimated maximum queue lengths and recovery times for the 

weekday AM, Midday (9:00 A.M. - 4:00 P.M.), and P.M. (4:00 P.M. - 7:00 P.M.) periods for 

both directions of I-95 in the case of incidents with one-lane blockage. In the case of incidents 

with multiple-lane blockages, statistical results show that the lane blockage times are generally 

much higher. However, the frequency of occurrence of multiple-lane blockages is much lower 

than that of incidents with only one lane blocked. In addition, when incidents with multiple lane 

blockages occur, some of the blocked lanes can usually be reopened much sooner than the 

reopening of all blocked travel lanes. In calculations for queue length and dissipation time for 

incidents with multiple-lane blockages, lane blockage durations are divided into periods of four-, 

three-, two-, and one-lane blockage. This is made possible because detailed timestamp 

information is available from the incident management database. The percentages of remaining 

capacities under different blockage situations are retrieved from the HCM. The methods for 

estimating maximum queue lengths and queue dissipation time remain the same as that 

mentioned above. 

To quickly identify secondary crashes, a program was written for this study in the C# 

programming language to link possible secondary crashes with primary incidents. This was done 

according to the spatial and temporal criteria calculated above. The program identified 255 

secondary crashes resulting from 221 primary incidents with lane blockages. Figure 6-2 

graphically displays the three corridors managed by FDOT D4 and the spatial distribution of the 

identified primary incidents that have associated secondary crashes. The figure shows that 
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primary incidents with linked secondary crashes were concentrated on the I-95 and I-595 

corridors.  

TABLE 6-1 Estimated Maximum Queue Lengths and Recovery Times for Incidents on I-95 with 
One-Lane Blockage 

Direction Period 

Average 

Lane 

Blockage 

(min) 

Average 

Incident 

Duration 

(min) 

Average 

Hourly 

Volume 

(vph) 

Maximum 

Queue 

Length 

(mile) 

Recovery 

Time 

(min) 

Queue 

Dissipation Time 

After Incident 

Clearance (min) 

 

SB 

AM 29.69 68.64 7430 1.14 33.34              0.00 

Midday 28.48 58.16 7410 1.09 31.31   1.63 

PM 28.05 56.52 7869 1.31 50.23 21.76 

 

NB 

AM 30.92 71.74 7831 1.42 53.07 12.25 

Midday 36.63 64.76 7203 1.26 32.54   4.41 

PM 33.59 66.28 7747 1.49 52.60 19.91 

 

 

I-95 

I-75 

I-595 

 

FIGURE 6-2 FDOT D4 Managed Corridors and Distribution of Secondary Crashes 
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6.4. Statistical Analyses 

6.4.1. Descriptive statistics 

Some relevant descriptive statistics of secondary crashes for the three corridors are listed 

in Table 6-2. The table shows that the percentages of secondary crashes for both directions of I-

95 are significantly higher than those of I-595 and I-75. In Table 6-2 and the following tables, 

the primary incident percentage is calculated as the percentage of all lane closure incidents that 

were identified as primary incidents in this study. The secondary crash percentage is defined as 

the percentage of all incidents that were identified as secondary incidents (including lane 

blockage and non-lane blockage incidents). Table 6-2 shows that the primary and secondary 

crash percentages are the highest on I-95, followed by I-595 and I-75. In addition, as mentioned 

previously, historical traffic volume data also show that the I-95 segment has the highest AADT, 

followed by I-595 and I-75.  

TABLE 6-2 Secondary Crash Distributions by Freeway Corridors 

Freeway 
Lane Blockage 

Incidents 

Primary 

Incidents 

Primary 

Incident 

Percentage 

Crashes 
Secondary 

Crashes 

Secondary 

Crash 

Percentage 

I-95 N 1,737 103 5.93% 2,857 123 4.31% 

I-95 S 1,676 82 4.89% 2,787 92 3.30% 

I-595 E 340 15 4.41% 650 18 2.77% 

I-595 W 338 13 3.85% 640 14 2.19% 

I-75 N 175 4 2.29% 500 4 0.80% 

I-75 S 169 4 2.37% 469 4 0.85% 

Overall 4,435 221 4.98% 7,903 255 3.23% 

 

Table 6-3 presents the distributions of primary incidents and secondary incidents by 

month. The table shows that the months of January, June, and July have the highest primary 

incident percentages, whereas the months of January, June, July, and October experienced the 

highest percentages of secondary incidents. Because January, June, and July coincide with the 

vacation/holiday months in the study area, this suggests the potential impact of vacation and 

holiday traffic on primary incident and secondary crash percentages. 
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TABLE 6-3 Secondary Crash Distributions by Month 

Month 
Lane Blockage 

Incidents 

Primary 

Incidents 

Primary 

Incident 

Percentage 

Crashes 
Secondary 

Crashes 

Secondary 

Crash 

Percentage 

January 256 17 6.64% 512 24 4.69% 

February 252 12 4.76% 504 13 2.58% 

March 328 13 3.96% 650 14 2.15% 

April 304 18 5.92% 591 21 3.55% 

May 357 15 4.20% 637 16 2.51% 

June 345 23 6.67% 637 25 3.92% 

July 394 27 6.85% 705 36 5.11% 

August 401 17 4.24% 717 17 2.37% 

September 414 17 4.11% 743 17 2.29% 

October 551 27 4.90% 812 31 3.82% 

November 386 16 4.15% 675 21 3.11% 

December 447 19 4.25% 720 20 2.78% 

Figure 6-3 shows that Mondays, Thursdays, and Fridays have higher percentages of lane 

blockage incidents that act as primary incidents, as well as secondary incidents. The weekends 

have the lowest secondary incident percentages. This is not surprising as weekends generally 

have fewer lane blockage incidents and lower traffic volumes.  
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FIGURE 6-3 Secondary Crash Distributions by Day of Week 

Figure 6-4 shows the distributions of primary incidents and secondary crashes by six time 

periods: A.M. peak, Midday, P.M. peak, and Late Night (7:00 P.M. - 6:00 A.M.) periods for 

weekdays, and Daytime (6:00 A.M. -7:00 P.M.) and Nighttime (7:00 A.M. - 6:00 P.M.) periods 

for weekends. Figure 6-4 indicates that the A.M. peak period has the highest primary incident 

and secondary crash percentages. On the other hand, the P.M. peak period has much lower 

primary incident and secondary crash percentages than the A.M. peak and Midday periods. 
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FIGURE 6-4 Secondary Crash Distributions by Time of Day 
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Table 6-4 shows primary incident and secondary crash distributions by number of lanes 

blocked and primary incident types. The table suggests that incidents with two or more lanes 

blocked have a higher potential to cause secondary crashes than those with only one-lane 

blockage. Table 6-4 also shows that about 95% of incidents with lane blockages are of the 

“Crash” or “Disabled Vehicle” incident types. 

TABLE 6-4 Secondary Crash Distributions by Lane Blockages and Incident Types 

Blockage/ Type 
Lane Blockage 

Incidents 

Primary 

Incidents 
Primary Incident Percentage 

1 Lane 2,475 108 4.36% 

2 Lanes 1,118 55 4.92% 

3+ Lanes    842 58 6.89% 

    

Crash 3,459 183 5.29% 

Disabled Vehicle   717 27 3.77% 

Debris   105 2 1.90% 

Other Types   139 9 6.47% 

 

Previous studies have shown that the primary incident percentages ranged from 7% to 

13% (Moore et al. 2004) and that the secondary crash percentages ranged from 15% to 35% 

(Karlaftis et al. 1998). Some previous studies on secondary crashes tend to define these crashes 

“relatively broadly” (Moore et al. 2004) because they do not consider the dynamic nature of 

traffic conditions during incidents. This could potentially result in an overestimation of the 

percentages of secondary crashes. This study shows that, for the three freeway corridor segments 

investigated, the average percentage of primary incidents was only about 5% and the average 

percentage of secondary crashes was 3.23%. 

6.4.2. Logistic Regression Analysis 

Regression analysis methods, especially linear regression models, have increasingly been 

used in transportation research. One objective of secondary crash model analyses is to estimate 

the likelihood of a secondary crash, given the characteristics of the primary incident. Because 
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there are only two possibilities (0 or 1) for secondary crash occurrence, linear regression 

analysis, which assumes that the independent variable follows a continuous normal distribution, 

is inappropriate here. In this study, a logistic regression model is applied to analyze the 

relationships between the primary incident characteristics and the possibility of secondary crash 

occurrence. A similar approach was utilized in a study by Karlaftis et al. (1998) for analyzing the 

likelihood of secondary crashes and in a study by Madanat et al. (1994) on predicting the gap-

acceptable probability at a stop-controlled intersection. The general form of incident occurrence 

probability in a logistic model is as follows: 

P(y i = 1 | x i ) = p i = 
i

i

x

x

e
e

βα

βα

+

+

+1
 

The odds of an event occurring (odds ratio) is defined as follows (Wang and Guo): 

ix

i

i e
p

p βα+=
−1

 

where,  

p i  is the probability that an instance i will occur,  

α is the constant,  

β is the vector of coefficients for independent variables, and  

x i  is the vector of independent variables. 

6.4.3. Potential Independent Variables 

To predict the likelihood of secondary crashes, this study examines a set of primary 

incident and traffic characteristics. These have the potential for possible inclusion as independent 

variables in the developed logistic regression model. The following variables were considered: 

 Incident duration factors: Logically, the probability of secondary crash occurrence may 

be anticipated to increase with a rise in primary incident durations.  Two incident 
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duration factors were extracted and considered in this study, the total duration of a 

potential primary incident (detection plus response plus clearance durations) and the 

related lane blockage duration. 

 Time factors: Time factors are good indicators of traffic conditions, driver alertness, and 

familiarity with the route.  The three time factors extracted were the month of year, day 

of week, and time of day (AM, Midday, PM, Late Night, Weekend Day, and Weekend 

Night). 

 Environmental condition factors: Environmental conditions at the incident site could have 

an impact on the likelihood of secondary crashes. For example, heavy rain may affect 

freeway visibility conditions and, thus, may increase the possibility of secondary crash 

occurrences. Five condition factors were considered: “Pavement,” “Precipitation,” 

“Wind,” “Visibility,” and “Illumination.” Collectively, the use of these factors reflects 

whether wet/dry pavement, rain, strong wind, poor visibility, and/or dark conditions are 

associated with secondary incidents. 

 Incident type factors: The four factors extracted for this category were “Incident Type” 

(Crash/Abandoned Vehicle/Disabled Vehicle/Debris, etc.), “Rollover,” “Fire,” and 

“Hazmat” (for hazard materials). 

 Location and traffic condition factors: Two factors were considered in this category, 

“Corridor” (analyzed corridor per direction: I-95 NB, I-95 SB, I-595 EB, I-595 WB, I-75 

NB, and I-75 SB) and the volume/capacity ratio (v/c ratio) of the corridor segment on 

which the secondary incident occurs. To calculate the v/c ratios, the 2006 hourly traffic 

volume data from the FDOT for the freeway corridor segments were matched to the 

specific time of day at which a primary incident occurred. The freeway number of lanes 

information is extracted from the SMART database (8). The freeway capacities were 

estimated based on the number of lanes by assuming a lane capacity of 2,200 vphpl. 

 Lane closure factor: As discussed above, incidents with two-lane blockages are more 

likely to have associated secondary crashes. Therefore, the number of blocked lanes is 

included in the regression analysis. 

 Injury condition factor: Injury and fatality conditions may have a significant impact on 

primary incident site conditions and time. Accordingly, an injury condition factor was 

investigated for inclusion in the model in this study. 
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 Vehicle type factors: Three factors were extracted for this category “Vehicle Count” 

(number of vehicles involved), “Commercial” (if a commercial vehicle is involved in the 

incident), and “Vehicle Type” (Car/Van, Tractor, Truck, Motorcycle, Emergency 

Vehicle, etc.). 

Note that some of the above factors are correlated with each other. Thus, only some of 

the correlated factors are expected to be selected by the regression model. The significance of 

these factors is determined as part of the model development and testing process, as described 

below. 

6.4.4. Model for Secondary Crash Likelihood 

The binary logistic regression function of the Statistical Package for Social Science 

(SPSS) was used to develop the model. All of the factors listed in the previous section were 

included in the initial model. The model is then tested to determine the significant variables. A 

forward conditional criterion was used to add one best fit variable at a time during the regression 

process. All of the identified variables are significant at the 0.05 level. During the regression 

process, the log-transformation was applied to the incident and lane blockage duration factors for 

better results (i.e., data normalization). A correlation test shows that there is not a strong 

relationship between the independent factors. The regression results are listed in Table 6-5, 

which indicates the following: 

 Longer freeway travel lane blockage durations increase the likelihood of secondary 

crashes. Longer lane blockages will increase freeway congestion and, as traffic queue 

length increases, the possibility of secondary crashes increases. 

 Whether an incident occurs on the northbound I-95 corridor (“I95NB”) is also identified 

as an important factor for predicting secondary crash likelihood. When all other factors 

are fixed and an incident with lane blockage occurs on I-95 northbound, the probability 

of secondary crashes increases. The I-95 corridor in Fort Lauderdale has four travel lanes 

for both directions, while the other two corridors (I-75 and I-595) only have three travel 

lanes. Therefore, a possible reason for an increased likelihood of secondary crashes on I-

95 is the higher AADT. In addition, more travel lanes on I-95 could increase the 
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variations in travel speeds between the opened and closed lanes, causing drivers to 

change lanes more often and create traffic turbulence.  

 When all other factors are fixed, compared to other time periods the likelihood of 

secondary crashes is higher for the weekday morning and afternoon peaks (AM, PM), as 

well as Midday periods. This result is consistent with what is shown in Figure 4. The 

coefficient of the A.M. factor is higher than that of the Midday and P.M. factors. This 

suggests that the possibility of secondary crashes is the highest during the weekday 

morning peak periods. 

 When all other factors are fixed, secondary crashes are more likely to occur when the 

primary incident type is “Accident.” 

TABLE 6-5 Logistic Regression Model Results for Secondary Crash Likelihood 
Variable Name Coefficient Exp(B) Significant Level 

Constant -7.652 0.000 <0.001 

LN(Lane Blockage Duration)  2.113 8.270 <0.001 

Incident Occurred on NB I-95  0.395 1.484    0.031 

PM (16:00-19:00)  1.028 2.794    0.001 

Midday (9:00-16:00)  1.160 3.191 <0.001 

AM (6:00-9:00)  1.446 4.247 <0.001 

Incident is Accident  0.565 1.759    0.048 

Model Statistical Results 

Sample Size (N)     4,435 Model Chi-Square 491.489 

Model -2Log-likelihood 970.802 Analogous R2     0.336 

Table 6-5 shows that, with the exception of the constant factor, the coefficients of the 

identified variables are all positive. This means that all identified variables contribute to 

increasing the likelihood of secondary crashes. The Marginal Effect/Odd ratio (Exp(B)) column 

of Table 6-5 shows the odds ratios, which are the predicted changes in odds of the dependent 

variable for a unit increase in the corresponding independent variable. The lane blockage 

duration variable has the highest odds ratio. This indicates that incident duration has the highest 

influence on secondary crash occurrence. The traffic management strategies that clear roadway 
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blockages as quickly as possible will therefore have a significant impact on reducing the chance 

of secondary crashes. 

Table 6-5 also shows the overall statistical results for the developed logistic regression 

model. The analogous R2 value, which is similar to the commonly used Coefficient of 

Determination R2 in multiple linear regression analysis, is taken as a measure for goodness-of-fit. 

The analogous R2 is defined as 1- 
0LL

LLM , where LL0 is the log-likelihood of the initial model 

(LL0= LLM + Model Chi-Square) and where LLM is the log-likelihood of the final model. The 

analogous R2 value is 0.336 for the model. The Chi-Square (Hosmer-Lemeshow) goodness-of-fit 

test shows that the Chi-Square goodness-of-fit is not significant (0.707). This suggests that the 

model has an adequate fit. 

According to the constant and variable values identified in Table 6-5, the logistic 

regression model for secondary crash likelihood can be expressed as follows: 

(
yCrashNoSecondar

rashSecondaryC )       =     EXP( -7.652 + 2.113 ×LN(LaneBlockage)  

+ 0.395 ×  I95NB + 1.028 ×  PM  

+ 1.160 ×  Midday + 1.446 ×  AM 

+ 0.565 ×  Accident) 

In any case, at most one of the three time of day binary factors, i.e., “AM,” “PM,” and 

“Midday,” can be true. The model can be used to compute the ratio of likelihood that a potential 

primary incident will occur. If the value is greater than one, it means that the probability of a 

secondary crash occurrence is higher than that of no secondary crash occurrence. 

The following example can be used to illustrate the idea of the developed logistic 

regression model. Suppose a lane blockage duration incident occurred during a weekday 

afternoon peak period, and that this incident was an accident. The incident also occurred on 

northbound I-95 and had a lane blockage duration of 15 minutes. From the model, one can derive 

an odds ratio (
yCrashNoSecondar

rashSecondaryC ) of slightly greater than one, and thus determine that a 

secondary crash is more likely to occur. 
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6.5. Conclusions 

This chapter has described an effort to better determine freeway secondary crashes for the 

purpose of identifying their contributing factors. A method based on a cumulative arrival and 

departure rate (queuing) technique was first developed. It was then used to estimate the 

maximum queue lengths and associated queue dissipation time for incidents with lane blockages. 

Based on the results, secondary crashes were identified as those that occurred upstream within a 

maximum possible queue length and queue dissipation time of the primary incident. Both 

descriptive statistics and logistic regression analyses were then applied to identify potential 

factors that contributed to these crashes. The regression model developed identified the 

following four factors as having significant effects on the likelihood of secondary crash 

occurrence: primary incident type, primary incident lane blockage duration, time of day, and 

whether the incident occurred on northbound I-95. The model showed that accidents occurring in 

the daytime period and with long lane blockage durations can significantly increase the 

possibility of secondary crashes. Therefore, traffic management strategies that clear roadway 

blockages as quickly as possible will have a significant impact on reducing the chance of 

secondary crashes. 
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7.  Estimation of Incident Impacts and Severity Levels 

7.1. Introduction  

Effective incident management requires the identification of incident severity and its 

potential impacts on the transportation system and its users. For on-line applications, while 

incidents are active, this identification allows agencies to determine the required levels of 

response such as dynamic message sign messaging decisions, diversion plan activations, and 

allocation of response resources. For off-line applications, analyzing historical data to classify 

incidents by severity level allows for the better planning of incident management activities.   

Many measures can be used to assess the severity of incidents based on their impacts on 

the transportation system and its users. These can include combinations of incident attributes 

such as incident duration, injury level, and lane-blockage level, as well as estimated incident 

impacts; such as the impacts on mobility, safety, energy consumption, the environment, and 

traveler satisfaction. Due to the difficulty in assessing the impacts of incidents, particularly for 

on-line applications, transportation agencies have used simplified criteria to classify incidents 

based on incident attributes, as explained below. 

The Florida Department of Transportation (FDOT) incident management (IM) program 

classifies traffic incidents into three severity levels based on incident duration and lane blockage 

information (SMART SunGuide 2009). Level 1 incidents are incidents with minor or no-lane 

blockage and an estimated impact to traffic of less than 30 minutes. Level 2 incidents are 

intermediate traffic incidents with impacts to traffic estimated to be between 30 minutes to 2 

hours. Level 3 incidents are major traffic incidents, which last for more than 2 hours or involve 

closing all mainline lanes or exit lanes. The above definition is also used by the FDOT SunGuide 

traffic management center (TMC) software and traveler information systems to classify incident 

severity levels. However, this definition requires the knowledge of the incident duration, which 

is not known until an incident is cleared. The current implementation uses a default of 30 

minutes as the incident duration, and then reclassifies a lane blockage. If 30 minutes elapse and 

the incident is not cleared, it is reevaluated again after two hours. 

To determine the appropriate messages on dynamic message signs, the Texas Department 

of Transportation (TxDOT) TransGuide system classified incidents based on injury severity 
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(TxDOT 2009). Incidents were classified as minor if the resulting injury was minor while all 

other injury cases were classified as major incidents. The given rational was that incidents 

involving minor injuries normally require less than 15 minutes to clear. 

As part of the incident response plan of the Georgia Department of Transportation 

(GDOT), GDOT classifies incidents into four severity levels based on lane closure and injury 

severity (GDOT 2009). Level 1 incidents are those with no injuries and no lane closures. Level 2 

incidents include minor injuries with one lane closure. Level 3 incidents involve serious injuries 

with two or more lane closures. Level 4 incidents are major incidents such as HAZMAT spills 

and fatal injury incidents with all lane closures. The corridor traffic operation plan for US 

Highway 45 Reconstruction developed by Wisconsin DOT includes a more detailed 

classification scheme based on vehicle damage, injury level, response agencies, incident 

duration, and whether the incident includes debris or spill (FHWA 2000). 

The Alternative Route Handbook reported the results of a survey of agencies throughout 

the United States and Canada to determine various aspects of their alternate route plans (Dunn 

2006). A total of 26 survey responses were received. One of the survey items provided by the 

response agencies was the criteria for activating alternate route plans. The survey indicates that 

agencies mainly use lane closure as the criteria and, in some cases, combine this with a minimum 

threshold for the anticipated lane closure. One surveyed agency (ARTIMIS in Ohio/Kentucky) 

has different criteria for the peak and non-peak hours, considering that the impact of lane closure 

is more severe in the peak period. 

The above discussion indicates that transportation agencies have mainly used simple 

incident attributes such as incident duration and lane blockage to classify incidents by severity. 

Kachroo et al (1997) proposed the use of a severity index to classify incidents. This index is 

calculated based on average incident delay (minutes per vehicle), incident duration, and incident 

type. 

This chapter discusses models developed to estimate incident impacts in real-time and 

proposes an approach to assign an impact severity index to each incident based on the estimated 

incident impacts. To classify incidents by severity, the impact severity index is calculated using a 

K-NN classifier algorithm that accounts for all primary incident attributes and impacts on traffic 

operations, which has not been done in the past. The incident attributes and impacts considered 

are lane blockage, incident duration, average incident delay, queue length, and the potential for 
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secondary incidents. The severity index estimation utilizes models developed in this study to 

predict incident duration and the potential for secondary incidents. The incident duration model 

developed in this study is the M5P method. This method has a number of advantages that will be 

discussed later in this chapter. In addition, this study separates the incident duration into incident 

response time and incident clearance time and has also provided separate predictions for the two 

components. This is significant since the factors that affect these two duration components are 

different.  

7.2. Estimation of Incident Attributes and Impacts 

A number of measures are considered important to quantify incident impacts. Such 

measures include the percentage of lane blockage, incident duration, average incident delay, 

queue length, and the potential for secondary incidents. The estimation of these parameters 

requires the use of models developed for this purpose, as described below. 

7.2.1. Incident Duration 

Incident duration is used by many agencies either alone or in combination with other 

parameters to determine incident severity. In addition, it is an important factor in the estimation 

of incident mobility and safety impacts, as described later in this chapter. When analyzing 

historical data, the incident durations are available from the incident data archives. However, for 

real-time applications, a model is needed to predict incident durations based on parameters that 

are available in real-time. A model was developed in this study to predict incident delay based on 

FDOT District 4 historical data.  

Previous Studies 

A number of studies have developed models to estimate incident duration. Yazici et al. 

(2010) provided a comprehensive summary of literatures on incident duration studies. Overall, 

the review identified 19 prior studies that dealt with incident duration statistics and prediction 

models. All of these studies were conducted prior to 1999 and applied probabilistic distribution, 

linear regression, conditional probability, time sequential, decision tree, and rule-based models to 

incident duration estimation. Initial exploration was done to determine if one or more of these 

models could be used to estimate incident durations for the purposes of this study. It was found 
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that three of these models were viable to investigate. The other models could not be used either 

because the parameters were not available or because they were tightly linked to local 

conditions. The three models were those developed by Garib et al. (1997) and Wang (1991) 

using regression analysis, and by Smith and Smith (2001) using the classification tree method. It 

was found that these three models were not able to produce acceptable estimations for incident 

duration in the FDOT District 4 region. It is expected that one of the significant reasons for this 

unacceptable performance is the difference in incident and incident management attributes, and 

their recordings in different regions. 

An advantage of regression models is that confidence intervals and other statistics 

measures can be added to the forecasted output (Smith and Smith 2001). However, if producing 

estimates with wide confidence intervals, the developed models may lack operational values. 

Ozbay and Kachroo (1999) used the decision tree as an alternative to predict incident durations 

for cases of wide confidence intervals resulting from regression. An advantage of decision tree 

models is that they are easy to understand and make no assumptions on the probabilistic 

distributions of the incident data. A disadvantage of the decision tree method is that the variables 

need to be categorical. Because incident duration and clearance time are continuous variables, 

these variables must be categorized into multiple discrete intervals. If the intervals are not 

divided correctly, this categorization may result in unfavorable results.  

In this study, a new model for predicting incident duration was derived based on FDOT 

District 4 incident data. Unlike previous studies, the model estimates incident response and lane 

clearance durations separately, and then adds these two duration values to obtain the total lane 

blockage duration. The rationale is that these two durations are influenced by different factors. 

The lane clearance duration is the time between first responder arrival and the reopening of all 

travel lanes. The response time is defined for the purposes of this study as the time from the 

occurrence of the incident to the arrival of the first responder.  

Lane Clearance Estimation 

Incidents with lane closures for a one-year period from April 2006 to March 2007 were 

used for the prediction model development for a total of 2,535 lane-blockage incidents. A set of 

factors were selected for possible inclusion as independent variables in the prediction model. 

These factors include: time of day that the incident occurs (AM, PM, Midday, Night, Weekend), 
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incident verification and response times, environmental factors (pavement wetness, visibility, 

illumination conditions, rain conditions), incident type (accident, fire, rollover, and so on), 

activated incident management processes (number and activities of responded service patrol, 

whether a severe incident response vehicle was dispatched, DMS usage), and incident attributes 

(total number of lanes, number of blocked lanes, injury conditions, and truck, tractor, or bus 

involvement). The dependent variable is the lane clearance duration (in minutes).  

In this study, the decision tree method was first tried for the estimation of lane clearance 

duration. Since the duration is a continuous variable, it had to be converted to a categorical 

variable, by categorizing the durations to intervals within specific ranges, before the decision tree 

method could be applied. The interval had to be narrow enough to produce acceptable results 

while not so narrow as to have a small number of instances. Different interval combinations (10-, 

15-, 30-minute) were evaluated, but the results were all poor. Considering the limitations of 

using the decision tree for lane clearance duration estimation, this study employs a different type 

of tree called the M5P tree for the estimation of lane clearance duration. The M5P tree algorithm 

originates from the M5 tree, which was developed by Quinlan (1992) for predicting continuous 

variables. One major advantage of the M5 tree over the traditional decision tree or CART tree 

methods is that trees built by the M5 algorithm can have multivariate linear models as their 

leaves instead of single values. Wang and Witten (1997) modified the original M5 tree algorithm 

to handle enumerated attributes and missing values and called it the M5P algorithm. This study 

applied the M5P tree algorithm to predict lane clearance duration due to its ability to deal with 

numerical variables, categorical variables, and missing values, and its ability to generate linear 

regression models at the tree leaves. To our best knowledge, no previous study has developed a 

prediction model for lane clearance time or applied the M5P tree algorithm to the study of 

incident duration prediction.  

A ten-fold cross validation method was used for the M5P model development and 

evaluation. In the ten-fold cross validation, the dataset was split into ten equal-sized subsets. One 

subset, in turn, was used for model validation, and the other nine subsets were used for model 

development. Individual error estimations were averaged to achieve an overall error estimate. 

The minimum number of instances (records) per leaf node in the M5P tree was chosen to be 100.  

The developed M5P model is shown in Figure 7-1. Figure 7-1 shows that the number of 

lanes closed and day versus night operations are the most important factors at the upper level 
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categorization of incidents by duration. LM1 to LM5 in Figure 7-1 are linear regression models 

developed for each of the resulting categories from the upper level categorization. One of the 

assumptions of the linear regression method is that the error is normally distributed, a condition 

which may not be met, particularly for wide ranges of variable values. With a tree classification 

method, the data sets are classified into more closely related subsets and regression models 

which better meet the normality assumption produced after the classification. In addition, this 

study applied the Box-Cox transformation to identify the best transformation for the dependent 

variable (Johnson and Wichern 2002). This is a commonly used method to transform non-normal 

data to allow regression model analyses that require the normal distribution assumption. The 

maximum likelihood estimates (MLE) and residual plots were used as criteria for the evaluation 

of transformation optimality.  

 

FIGURE 7-1 M5P Tree Model Developed for Lane Clearance Duration Prediction 

 

The tree leaves of the developed regression model are given below and variable 

explanations are given in Table 7-1 (see Figure 7-1 for the illustration of the subsets of the data, 

for which the LM1 to LM5 models were developed): 

LM1:  

=),( λτ Y  2.912 + 1.117 ×  NumRRAssists – 0.091 ×  TMCResponse  

+ 0.091 ×  TMCVerification + 0.892 ×  Injury – 0.999 ×  ShoulderAvailable 
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+ 2.093 ×  hasFullBlockage + 0.542 ×  Weekend + 0.908 ×  Tractor  

+ 1.602 ×  Truck – 0.496 ×  DisabledVehicle – 0.372 ×  CCTV  

+ 0.023 ×  DMSCount           (7-1) 

LM2:  

=),( λτ Y  5.219 + 1.997 ×  NumRRAssists – 0.154 ×  TMCResponse  

+ 0.887 ×  ationTMCVerific + 4.875 ×  SIRV + 12.104 ×  BUS  

+ 3.613 ×  Tractor                 (7-2) 

LM3:  

=),( λτ Y  7.142 – 4.971 ×  ShoulderAvailable+ 1.694 ×  NumRRAssists  

– 0.155 ×  TMCResponse + 2.752 ×  Weekend + 0.080 ×  DMSCount  

+ 7.017 ×  BUS + 7.025 ×  Emergency + 1.825 ×  Illumination  

+ 2.080 ×  Rollover + 0.393 ×  VehicleCount + 2.826 ×  HasFullBlockage  

+ 1.629 ×  Tractor          (7-3) 

LM4:  

=),( λτ Y  -330.463 + 2328.506 ×  TotalActivities + 2058.012 ×  Injury  

– 1649.351 ×  NumRRDispatches + 4103.359 ×  SIRV  

+ 1743.637 ×  I595E + 851.413 ×  Weekend – 68.838 ×  TMCResponse  

+ 60.161 ×  TMCVerification        (7-4) 

LM5:  

=),( λτ Y  5.677 + 1.146 ×  NumRRAssists – 2.257 ×  ShoulderAvailable– 3.250 ×  Midday  

+ 1.729 ×  Rollover – 3.408 ×  PM – 2.028 ×  AM + 1.441 ×  Tractor  

+ 4.455 ×  Truck – 0.066 ×  TMCResponse + 0.683 ×  TotalLanes  

+ 0.677 ×  TotalActivities + 1.951 ×  Fire + 2.684 ×  HAZMAT        (7-5) 
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TABLE 7-1 Variable Explanations for Lane Clearance Duration Prediction Sub-models 
Name Type Explanation 
NumRRAssists N Number of onsite assists by Road Ranger operators 
TotalActivities N Total number of onsite activities by responders 
NumRRDispatches N Number of Road Ranger vehicles dispatched 
DMSCount N Number of Dynamic Message Signs activated 
TMCResponse N TMC response time (in minutes) 
TMCVerification N TMC verification time (in minutes) 
DisabledVehicle C If the incident type is “disabled vehicle” 
ShoulderAvailable C If shoulder is available for lane blockage incidents 
HasFullBlockage C If ramp(s) or all travel lanes were blocked 
CCTV C If CCTV cameras were used 
SIRV C If a SIRV was dispatched to the incident site 
Weekend C If an incident occurred during a weekend 
Midday C If an incident occurred during the midday period 
AM C If an incident occurred during the A.M. peak 
PM C If an incident occurred during the P.M. peak 
Injury C If personal injuries or fatalities occurred 
VehicleCount N Number of vehicles involved 
Fire C If any incident vehicle was on fire 
Rollover C If any incident vehicle rollover occurred 
Illumination C If it is daylight (0) or dark (1) 
I595E C If an incident occurred on I-595 Eastbound 
Tractor C If tractor/trailer was involved in the incident 
Truck C If any dump truck was involved in the incident 
Bus C If any bus was involved in the incident 
Emergency C If any emergency vehicle was involved 
TotalLanes N Total number of lanes at the incident site 
HAZMAT C If hazard materials was involved 

Note: “N” indicates numerical variable and C indicates categorical variable. 

 

In the developed regression sub-models listed above, all the independent variables are 

significant at the 0.05 confidence level. The Variance Inflation Factor (VIF) values are all less 

than 3.0, which indicate no significant collinearity relationships. Overall, the LM1 to LM5 sub-

models show that the significant factors in predicting lane clearance duration are the number of 

responded service patrol vehicles, injury presence, number and type of vehicles involved (tractor, 

truck, etc.), time of day (AM, PM, Midday, Night, Weekend), TMC verification and response 

time, incident type (Fire, Rollover, etc.), number of lanes blocked, presence of CCTV cameras, 

and the presence of SIRV. As expected, when truck, tractor, bus, or emergency vehicles were 
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involved in an incident, the lane clearance duration would be longer than those with only cars 

involved. If a shoulder was available at the incident site, the lane clearance time would be 

generally shorter because incident vehicles could be moved to the shoulder and travel lanes could 

be cleared faster. When all other factors were fixed, weekends usually had longer lane clearance 

times, while lane clearance times during workday daytime (AM, Midday, and PM) were shorter 

than workday nighttime or weekends. The “TMCResponse” variable showed a negative sign in 

all equations, indicating shorter time with slower response of the service patrol vehicles. While 

this may at first seem contrary to expectations, it can be explained as follows. The response time 

of service vehicle is expected to be a function of the severity of the incident. As such, the more 

severe the incident, the faster the response it will receive. In cases of less severe incidents, the 

service patrol places a low priority on the incident and responds to more severe incidents first. 

Table 7-2 lists a number of parameter values that are important for model acceptance. 

Table 7-2 shows that four of the five sub-models can achieve adjusted R2 values equal or higher 

than 0.45. LM2, which is the sub-model for incidents with one lane blocked during the nighttime 

period, has the lowest adjusted R2 value (0.36). This shows that, during the nighttime period, 

lane clearance time is more unpredictable than the other periods, which may be due to the 

shortage of resources. The F statistics and the generally small Se, indicate that the models are 

adequate predictors. 

 

TABLE 7-2 Statistical Results for Lane Clearance Duration Prediction Sub-models 

Sub-Model 

Name 

Box-Cox 

Transformation 

Parameter (λ) 

Number 

of 

Variables 

(V) 

Sample 

Size (N) 

Coefficient 

of 

Determinati

on (R2) 

Adjusted 

R2 

Standard 

Error 

Term (Se) 

F 

Statistics 

LM1 0.25 12 1,145 0.47 0.46 1.86 38.26 
LM2 0.10       6        350 0.37 0.36 1.49 16.84 
LM3 0.50 12        392 0.51 0.49 3.65 18.03 
LM4 2.00       8        198 0.64 0.62 1989.7 31.16 
LM5 0.45 13        450 0.47 0.45 3.41 21.03 

Incident Response Time  

The previous section describes the estimation of lane clearance duration. The total lane 

blockage duration can be estimated by adding to this time the response time defined earlier in 
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this chapter. The FDOT District 4 database was used to estimate this time by implementing a 

cross-classification approach. The results are shown in Table 7-3. This time was found to be 

shorter than the lane clearance time, and its variation was found to be relatively small. In 

addition, the factors that are expected to affect the response time are less than those that affect 

the lane clearance duration. Thus, a cross-classification approach of the type presented in Table 

7-3 was used for the purpose of estimating the response time. The factors used in the cross-

classification are night vs. day, weekdays vs. weekends, and the injury levels of the incidents. In 

addition to response time, Table 7-3 also shows the additional shoulder blockage duration after 

the blocked lanes are cleared. 

 

TABLE 7-3 Agency Response and Additional Shoulder Blockage Durations 
# of 

Lanes 

Blocked 

# of 

Incidents in 

Category 

Major 

Injury / 

Fatality 

Time of Day 

Response 

Duration 

(minutes) 

Additional 

Shoulder Blockage 

(minutes) 

1-lane 125 No Weekend Day 8.18 24.63 
1-lane 92 No Weekend Night 7.81 25.59 
1-lane 642 No Weekday Day 6.52 26.85 
1-lane 158 No Weekday Night 7.75 25.05 
1-lane 96 Yes Day 6.53 38.73 
1-lane 15 Yes Night 8.11 22.31 
2-lane 48 No Weekend Day 6.09 24.24 
2-lane 57 No Weekend Night 5.69 17.43 
2-lane 188 No Weekday Day 7.29 31.75 
2-lane 74 No Weekday Night 7.82 17.97 
2-lane 61 Yes Day 5.09 48.10 
2-lane 22 Yes Night 8.75 19.79 
3-lane 18 No Weekend Day 6.16 35.01 
3-lane 32 No Weekend Night 6.01 23.04 
3-lane 75 No Weekday Day 6.07 35.27 
3-lane 42 No Weekday Night 5.98 19.40 
3-lane 33 Yes Day 3.90 39.52 
3-lane 19 Yes Night 8.46 10.81 
4-lane 20 No Day 7.70 26.42 
4-lane 20 Yes Day 5.42 38.59 
4-lane 29 Yes/No Night 6.77 19.28 
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7.2.2.Incident Delay and Queue Length 

Simulation, shockwave, or queuing analysis could be used to estimate incident delays and 

queue length for the purposes of this study. In the results presented in this chapter, the queuing 

analysis approach was selected. The parameters required for the analysis include incident 

duration, traffic demands, and capacity with and without incidents. The traffic demands during 

incident conditions can be estimated based on the average historical traffic detector data at the 

incident location during the estimated duration of the incident. In this study, the historical traffic 

data was obtained from STEWARD, the Florida ITS data warehouse. The capacities during 

incident and non-incident conditions were estimated based on estimates presented in the 

Highway Capacity Manual (2000).  

7.2.3.Secondary Incidents 

Another important impact of incidents is the potential for secondary crashes. In this 

study, a logistic regression model was developed to assess the potential for secondary incidents 

in real-time (see Chapter 6). The model was developed based on the same FDOT District 4 

incident database. The identified logistic regression model for secondary crash likelihood in 

Chapter 6 presented below for convenience.  

           
yCrashNoSecondar

rashSecondaryC  = EXP(-6.100 + 0.462 ×LN(LaneBlockage)  

+ 0.170 ×  QueueLength + 0.236 ×  I95NB  

+ 0.702 ×  PM + 0.959 ×  Midday 

+ 1.397 ×  AM + 0.451 ×  Accident)                          (7-6) 

Where,  

LaneBlockage = total length of lane blockage in minutes, 

QueueLength = maximum queue length in miles caused by the incident, 

I95NB  = 1 if the incident occurred on I-95 northbound and 0 otherwise, 

PM   = 1 if the incident occurred during the workday afternoon peak period, 

Midday  = 1 if the incident occurred during the workday midday period, 

AM   = 1 if the incident occurred during the workday morning peak period, and 

Accident  = 1 if the incident type is “Accident.” 
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7.3. Incident Impact Severity Levels 

In this study, a model is developed to obtain a combined severity index based on 

instances of real-world incidents with different estimated impacts and attributes. The impacts and 

attributes of the selected incidents were presented to ITS engineers, and the engineers were asked 

to assign a severity level for each incident case. The results of this assignment were then used as 

inputs to a k-nearest neighbor (k-NN) classification method to determine the relationships 

between the incident attributes and the impact severity levels, as identified by the ITS engineers.  

The k-NN classification method is an instance-based learning algorithm based on the 

assumption that similar instances belong to similar classes. For an unknown instance, the 

distances (e.g., Euclidean distance) between the unknown instance and others are calculated and 

used to determine the k-nearest neighbors. The unknown instance is then assigned to the most 

common class among its k-nearest neighbors. The k-NN classifier was selected because it allows 

the identifications of incident severity to change as new information is added to the incident 

instance database. Thus, if an incident is assigned a certain severity level during the real-time 

execution of the developed method and the operator does not like the assignment, then he or she 

can overwrite the assignment results. This overwrite will be used to update the base incident 

severity database, which will in turn be used in the future assignment of the severity of incidents 

by the k-NN classifier. 

In this study, the k-NN classifier was applied using the Weka software package (Witten 

and Frank 2005). The ten-fold cross-validation method is used to evaluate the classification 

performance.  

7.4. Application of the Methodology 

Thirty real-world incidents were selected from the FDOT District 4 incident database and 

used for model evaluation and comparison. These incidents were not used in the model 

development process. The selected incidents vary significantly in their attributes such as 

duration, lane-blockage percentage, location, time of day, traffic conditions, and other attributes. 

This variation in the attributes will allow a better assessment of the developed method and 

models.  
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Figure 7-2 indicates that, with the model developed in this study, the error in estimating 

the incident duration is high for some of the incidents. However, Figure 7-2 also indicates that 

the model fits the data relatively well and shows the correct trend in incident duration. In 

addition, the mean square error and average absolute difference when using the model developed 

in this study to estimate the lane clearance duration were 23.5 minutes and 18.3 minutes, 

respectively. This was significantly better than the results achieved using the models developed 

in previous studies.  

 

FIGURE 7-2 Measured Lane Blockage Duration Values versus Estimated Values Using the 
Developed Model 

Table 7-4 shows the estimated probability of secondary incidents for the 30 incidents 

used to apply the methodology of this study. The results indicate that the probability of 

secondary incidents ranged between 1.2% and 33.6%, with the highest probability occurring for 

accidents with long queues during the A.M. peak on a congested corridor.  
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TABLE 7-4 Estimation of Secondary Incident Probabilities 

Incident 

ID 

Contributing Factors 
Secondary 

Crash 

Probability 

Lane 

Blockage 

(min.) 

Queue 

Length 

(mile) 

On I-95 

NB 

Time of 

Day 
Accident 

295921 3.60 0.473 Yes AM No 2.20% 
282469 5.20 0.090 Yes Midday Yes 2.47% 
189640 9.15 0.245 Yes PM No 1.63% 
286095 12.00 0.604 Yes PM Yes 3.05% 
321081 19.2 0 Yes Night Yes 1.72% 
169906 21.98 0 Yes Weeken

 

No 1.17% 
170461 23.15 0.655 Yes PM Yes 4.12% 
185138 24.23 0.927 No Midday No 2.90% 
309983 30.92 0 Yes Night No 1.37% 
180463 30.07 0.630 No AM Yes 7.09% 
194627 61.15 0 Yes Night No 1.86% 
172400 51.28 0 Yes Night Yes 2.68% 
180713 107.9 1.532 Yes Midday Yes 11.60% 
201530 45.02 1.987 Yes PM Yes 6.82% 
293060 49.60 2.022 Yes AM Yes 13.37% 
283171 58.05 0.493 No Night Yes 2.44% 
174594 71.97 1.429 Yes Midday Yes 9.66% 
199301 87.43 0.088 Yes Night Yes 3.45% 
281659 41.82 3.931 Yes PM Yes 8.97% 
175762 76.73 4.164 Yes AM Yes 21.37% 
170019 87.3 1.628 Yes Night Yes 4.43% 
308403 84.17 3.991 Yes Midday Yes 15.09% 
303038 104.78 2.152 No Night Yes 4.17% 
173832 116.38 3.134 Yes Weeken

 

Yes 6.40% 
192290 41.97 6.140 Yes PM Yes 12.56% 
280226 74.37 3.990 Yes Midday Yes 14.37% 
170840 101.08 5.249 Yes Midday Yes 19.32% 
281282 97.93 6.624 No AM Yes 26.74% 
191883 130.82 4.486 Yes Night Yes 8.33% 
208447 169.82 7.040 No AM Yes 33.56% 

 

The measured attributes of the thirty incidents selected were presented to three ITS 

engineers. The engineers were asked to assign a severity level for each incident case. The results 

were used as input to the k-NN classifier described previously. Table 7-6 compares the results of 

applying the k-NN classifier approach to the 30 incidents with the scores assigned by the ITS 

engineers to these incidents. The cross-validation results show that the k-NN algorithm was able 
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to correctly classify 90% of the instances. Table 7-5 indicates that the model was able to assign 

the same scores assigned by the ITS engineers in 28 of the 30 cases. For the remaining two cases, 

the model assigned a severity of 1 instead of 2.  

 

TABLE 7-5 Incident Impacts and Index for the 30 Incidents of the Case Study 

Time 

No. of 

Lanes 

Blocked 

Predicted 

Incident 

Duration 

Queue 

Length 

(miles) 

Average 

Delay/Veh 

(minutes) 

Secondary 

Incident 

Probability 

Engineer 

Assigned 

Severity 

Model 

Predicted 

Severity 

AM 1 23.73 0.473 2.922 2.20% 2 2 
Midday 1 26.92 0.090 0.800 2.47% 1 1 
PM 1 30.8 0.245 1.958 1.63% 2 1 
PM 1 50.06 0.604 3.736 3.05% 2 2 
Night 1 55.67 0 0 1.72% 1 1 
Weeken

 

1 50.06 0 0 1.17% 1 1 
PM 1 49.78 0.655 4.364 4.12% 2 2 
Midday 1 49.93 0.927 6.202 2.90% 2 2 
Night 1 54 0 0 1.37% 1 1 
AM 1 62.85 0.630 4.087 7.09% 2 2 
Weeken

  

1 61 0 0 1.86% 1 1 
Night 1 96.66 0 0 2.68% 1 1 
Midday 1 83.81 1.532 9.709 11.60% 3 3 
PM 2 62.32 1.987 12.558 6.82% 3 3 
AM 2 73.05 2.022 12.500 13.37% 3 3 
Weeken

  

2 104.17 0.493 8.950 2.44% 3 2 
Midday 2 54.03 1.429 9.274 9.66% 2 2 
Night 2 85.37 0.088 1.910 3.45% 2 1 
PM 3 49.22 3.931 24.300 8.97% 3 3 
AM 3 93.23 4.164 25.741 21.37% 4 4 
Weeken

  

3 88.95 1.628 23.384 4.43% 3 3 
Midday 3 95.55 3.991 27.202 15.09% 4 4 
Night 3 80.23 2.152 23.195 4.17% 3 3 
Weeken

 

3 102.13 3.134 26.997 6.40% 4 4 
PM 4 111.43 6.140 40.912 12.56% 4 4 
Midday 4 91.02 3.990 27.953 14.37% 4 4 
Midday 4 123.96 5.249 46.469 19.32% 4 4 
AM 4 112.14 6.624 40.945 26.74% 4 4 
Weeken

  

4 131.47 4.486 56.020 8.33% 4 4 
AM 4 120.91 7.040 45.692 33.56% 4 4 

Note: “Weekend N” in this table indicates weekend night. 
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7.5. Conclusions 

This chapter presented models and methods to estimate the potential incident impacts on 

mobility and safety in real-time. Communicating these potential impacts to TMC operators will 

facilitate better decisions regarding incident management strategies.  

A major contribution of this work is the development of a new method based on the k-

NN classifier algorithm that allows incidents to be classified into categories based on primary 

incident attributes and impacts. These attributes and impacts include number of lanes blocked, 

predicted incident duration, estimated queue length, average delay, and secondary incident 

probability. The developed approach utilizes inputs from Intelligent Transportation Systems 

(ITS) engineers and/or Traffic Management Center (TMC) operation managers to calibrate a 

model that automatically identifies the incident severity class. The evaluation of the method 

indicates that the model was able to assign the correct severity of incidents, as perceived by ITS 

engineers in 28 of the 30 cases studies. For the remaining two cases, the model was assigned a 

severity of 1 instead of 2. It is expected that as more classified incidents are added to the training 

set, the rate of correct classification will increase markedly. This method can be considered for 

use as part of TMC operations. 

The model developed in this study to estimate lane blockage duration showed that several 

factors affect this duration, including the time of day that the incident occurs, incident 

verification and response times, environmental factors, incident type, incident response, activated 

incident management processes, and incident attributes. The model performance in terms of 

mean square error and absolute average error difference is better than what could be achieved 

with the use of three models that were borrowed from the literature. The use of even larger 

datasets could be investigated to see if additional data could improve the performance of the 

developed model.  

The model developed to estimate secondary incident potential indicated that the factors 

that can impact the secondary incident probability include queue length, whether the incident is 

an accident, the period of the day at which the incident occurs, and the specific corridor on which 

the incident occurs. The model predicts for incidents with varying attributes that the probability 

of secondary incidents can range between 1.2% and 33.6%, with the highest probability 

estimated for accidents with very long queues that occur in the A.M. peak on a congested 

corridor in the region of the study.  
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Appendix A Data Filtering Procedures  
 
TABLE A-1 Rule-based Tests used in Data Filtering Steps 

Aggregation 
Level Tests 

20-second 
detector data 

Eliminate 
duplicate data 

• Eliminate exactly same records 
• Identify data with same timestamp and lane ID 

but different speed, volume count, and 
occupancy 

• Identify data with the same lane id, speed, 
volume count, and occupancy but with time 
interval less than 20 second 

Univariate test 
•  S < 0 or S > Speed limit + 30 mph 
•  V < 0  or V > 17 for 20-second data 
•  O < 0 or O > 100 

Multivariate test 

•  S = 0, V > 0, and O > 0  (except that S = 0, V = 
1 and O >= 60)  

•  S > 0, V = 0, and O > 0 
•  S > 0, V > 52.8×S/(180×Leff), and O = 0 
•  S = 0, V = 0, and 3 < O < 100 
•  S = 0, V > 0, and O = 0 
•  S > 0, V = 0, and O = 0 

Temporary 
variability test 

•  Check the maximum consecutive periods of 
constant speed, volume count, and occupancy 
including all zeros 

•  Maximum of 30 periods (i.e., 10 minutes) for 
6:00 A.M. – 10:00 P.M. 

•  Maximum of 45 periods (i.e., 20 minutes) for 
10:00 P.M. – 12:00 A.M. 

•  Maximum of 90 periods (i.e., 30 minutes) for 
12:00 A.M. – 6:00 P.M. 

Temporal 
aggregated 
detector data 

Average effective 
vehicle length 

•  Leff =52.8×O×S/V  
•  Leff < 10 ft or Leff > 60 ft 

Maximum density •  k = V/S  
•  k > 250 vphpl  
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Appendix B Existing Travel Time Estimation Methods  
 

This appendix provides a brief description of existing travel time estimation methods 

used in comparison. 

 
FIGURE B-1 Schematic Diagram of Detector Configuration 

Point-to-Point Method 

The travel time link is divided into several segments. The summation of roadway 

segment travel time yields the total travel time along the link. For each segment, the speed 

detected at the upstream detector is used to represent the average speed of the whole segment 

such that the travel time TT1-2 along the segment L1-2 is  

                                                     
1

21
21 S

LTT −
− =   (B-1) 

Mid-Point Method 

Similar to the Point-to-Point method, the Mid-Point algorithm also estimates the travel 

time along a travel time link by summing up the segment travel time. However, the difference is 

that the speed measured by each detector in the Mid-Point method assumes that each detector 

speed measurement represents the speeds of half distances to the next detector on both sides. 

Thus, the segment travel time is calculated as follows: 
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Detector 1 Detector 2 Detector 3 

L1-2 L2-3 

S1 S2 S3 



Decision Support Tools to Support the Operations of TMCs 

 148 

Average Speed Method 

In the Average Speed algorithm, the speed along the roadway segment is approximated by the 

average speed of detectors at both the starting and ending points of segment. The corresponding 

expression for travel time estimation is listed as follows: 

                                                     
2/)( 21

21
21 SS

LTT
+

= −
−   (B-3) 

Minimum Speed Method 

For Minimum Speed method, the lower value of detector speeds at either end of the 

roadway segment is used in travel time estimation, that is, 
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21
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LTT −
− =   (B-4) 

Minnesota Algorithm 

A modified Mid-Point travel time estimation algorithm is developed by the Minnesota 

Department of Transportation (Mn/DOT) and applied to the twin cities.  Each roadway segment 

is divided into 3 regions.  For the central region, the speed of the detector within that region is 

used, and for each side region, the average speed of two adjacent detectors is applied as follows:  
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Linear Speed Method 

The Linear Speed method assumes that the speed is a linear function of space instead of 

being constant in certain portion of roadway segments, i.e.,  

                                                     )()( 21
12

1
1 SS

xx
xxSxS −

−
−

+=   (B-6) 

where x1 and x2 are the upstream and downstream detector locations of segment.  The resulted 

travel time can be estimated as: 
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The corresponding off-line travel time estimation method, Piece-wise Linear Speed 

Based Model (PLSB), was developed by Van Lint (2004). Note that for the off-line estimation, 

the traffic conditions at later time periods are known, allowing more accurate estimation of travel 

time since the travel time estimation can be done based on traffic conditions as the vehicle 

progresses in its route from one link to the next. However, for on-line applications, future traffic 

conditions are not available. 

Constant Acceleration Method 

The constant acceleration method assumes that the speed is a linear function of time (i.e., 

constant acceleration or deceleration rate) rather than a linear function of the distance, as the 

assumption in the Linear Speed method. The expression for the speed is as follows: 

                                                     )()( 11 ttaStS −+=   (B-8) 

where a is the acceleration or deceleration rate, calculated as: 
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Based on the principles of kinetics, it can be proved that this method is essentially the 

Average Speed method when using for instantaneous travel time estimation. The proof is 

presented below: 
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Shen (2008) developed the Piece-wise Constant Acceleration Based Model (PCAB) for 

off-line travel time estimation as an improvement to the Piece-wise Linear Speed Based Model 

(PLSB) developed by Van Lint (2004).  
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Flow-Based Method 

The Flow-Based Method mentioned in this study specifically refers to the travel time 

estimation using the data of flow and occupancy based on the fundamental relationship among 

the speed, flow and occupancy, which is expressed as: 
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where q2 is the flow rate at the downstream detector station.  k1-2 is the average density for this 

link, which is calculated from the occupancies at the upstream and downstream stations, as 

shown below: 
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where O denotes the occupancy while Leff represents the average effective vehicle length. 

Improved N-D Method 

The improved N-D method refers to the method developed by Vanajakshi (2009). Nam 

and Drew (1996, 1999) used a traffic dynamic approach to estimate travel time based on 

cumulative curves. This approach includes two expressions: one for normal conditions and one 

for congested conditions. However, Vanajakshi (2009) proved that these two expressions can be 

generalized as one expression, as shown below: 
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where qi,2,t is the flow rate at downstream station of the link i at time t.  ki,t-1 and ki,t are the link 

densities at time t-1 and t, respectively. These two densities are calculated as the average of 

densities at the upstream and downstream detector stations. To improve the estimation accuracy, 

the improved N-D method uses a generalized traffic dynamic expression for travel time 

estimation when the link volume is greater than 500 vphpl and the Mid-Point method for the 

remaining link volumes.  
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Appendix C Sensitivity Analysis Results for Travel Time Estimation  
 

This appendix presents detailed analysis results for the impacts of major influential 

factors on the accuracy and reliability of travel time estimates.  

C.1 Impacts of Data Smoothing Methods 

TABLE C-1 Accuracy and Reliability of Travel Time Estimation Using Simple Moving Average 

Method Rolling 
Period 

MAE 
(Minutes) MAPE (%) Reliability 

(%) % Early % Late 

Point-to-Point 
Method 

1-minute 1.87 14.91 58.42 3.50 38.08 
2-minute 1.96 15.51 58.53 2.53 38.94 
3-minute 2.05 16.23 59.56 2.01 38.43 
4-minute 2.11 16.63 59.10 2.47 38.43 
5-minute 2.17 17.09 58.24 3.91 37.85 

Mid-Point 
Method 

1-minute 1.69 13.70 62.03 4.19 33.77 
2-minute 1.79 14.37 60.89 4.19 34.92 
3-minute 1.87 15.05 60.25 3.68 36.07 
4-minute 1.95 15.62 61.34 2.99 35.67 
5-minute 2.04 16.31 57.50 6.43 36.07 

Hybrid Model 1 

1-minute 1.49 13.54 66.57 14.36 19.07 
2-minute 1.81 15.78 56.86 18.15 24.99 
3-minute 1.78 15.66 57.21 17.81 24.99 
4-minute 1.81 16.03 54.22 20.79 24.99 
5-minute 1.91 17.08 52.79 22.23 24.99 

Hybrid Model 2 

1-minute 1.44 12.72 63.70 17.17 19.13 
2-minute 1.59 13.86 61.45 16.72 21.83 
3-minute 1.73 15.00 58.93 16.72 24.35 
4-minute 1.89 16.29 56.23 19.01 24.76 
5-minute 2.04 17.72 48.65 24.81 26.54 
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TABLE C-2 Accuracy and Reliability of Travel Time Estimation Using Exponential Moving 
Average 

Method Smoothing 
Factor 

MAE 
(Minutes) MAPE (%) Reliability 

(%) % Early % Late 

Point-to-Point 
Method 

0.2 2.22 17.30 57.38 1.09 41.53 
0.4 2.07 16.28 57.32 1.78 40.90 
0.6 2.03 16.06 58.47 2.24 39.29 
0.8 2.04 16.09 58.24 2.24 39.52 
1.0 2.04 16.17 55.66 3.45 40.90 

Mid-Point 
Method 

0.2 2.02 15.93 58.53 3.67 37.79 
0.4 1.86 14.78 59.05 4.19 36.76 
0.6 1.82 14.49 59.97 3.10 36.93 
0.8 1.82 14.53 58.53 3.91 37.57 
1.0 1.84 14.66 59.10 3.85 37.05 

Hybrid Model 1 

0.2 1.50 13.51 61.63 12.52 25.85 
0.4 1.11 10.24 70.59 10.34 19.07 
0.6 1.13 10.72 66.63 14.70 18.67 
0.8 1.11 10.52 66.97 14.88 18.15 
1.0 1.44 12.77 61.00 19.30 19.70 

Hybrid Model 2 

0.2 1.49 12.51 69.21 3.33 27.46 
0.4 1.15 10.12 74.50 3.33 22.17 
0.6 1.03 9.28 73.92 4.36 21.71 
0.8 0.99 8.98 74.73 4.54 20.74 
1.0 1.09 9.60 73.23 4.48 22.29 
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C.2 Impacts of Data Imputation Methods 

TABLE C-3 Results of Different Data Imputation Methods without Within-Station Imputation 

Method Temporal 
Imputation 

Between-Station 
Imputation  

MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% 
Early % Late 

Point-to-
Point 
Method 

w/o 
Temporal 
Imputation 

Simple Average 2.09 16.38 57.09 2.93 39.98 
Linear Interpolation 2.09 16.35 57.09 2.93 39.98 
Factor Method 2.09 16.38 57.15 3.10 39.75 

Average of 
Temporal 
and Spatial 
Imputations 

Simple Average 2.08 16.28 57.09 2.93 39.98 
Linear Interpolation 2.08 16.25 57.09 2.93 39.98 

Factor Method 2.08 16.30 57.09 2.93 39.98 

Mid-
Point 
Method 

w/o 
Temporal 
Imputation 

Simple Average 1.87 14.86 59.97 3.50 36.53 
Linear Interpolation 1.87 14.85 59.97 3.50 36.53 
Factor Method 1.88 14.95 59.74 3.50 36.76 

Average of 
Temporal 
and Spatial 
Imputations 

Simple Average 1.86 14.79 59.97 3.50 36.53 
Linear Interpolation 1.86 14.77 59.97 3.50 36.53 

Factor Method 1.87 14.81 59.97 3.50 36.53 

Hybrid 
Model 1 

w/o 
Temporal 
Imputation 

Simple Average 1.09 10.23 68.70 10.91 20.39 
Linear Interpolation 1.08 10.16 68.70 10.91 20.39 
Linear Interpolation for S 
and O, and Factor for V 1.10 10.35 68.75 10.68 20.56 

Factor Method 1.15 10.79 66.28 12.92 20.79 

Average of 
Temporal 
and Spatial 
Imputations 

Simple Average 1.08 10.15 68.70 10.91 20.39 
Linear Interpolation 1.08 10.09 68.70 10.91 20.39 
Linear Interpolation for S 
and O, and Factor for V 1.09 10.20 68.70 10.91 20.39 

Factor Method 1.11 10.46 68.70 10.91 20.39 

Hybrid 
Model 2 

w/o 
Temporal 
Imputation 

Simple Average 1.23 10.72 72.20 4.77 23.03 
Linear Interpolation 1.23 10.70 72.20 4.77 23.03 
Linear Interpolation for S 
and O, and Factor for V 1.23 10.70 72.20 4.77 23.03 

Factor Method 1.24 10.77 71.97 4.77 23.26 

Average of 
Temporal 
and Spatial 
Imputations 

Simple Average 1.23 10.64 72.20 4.77 23.03 
Linear Interpolation 1.22 10.61 72.20 4.77 23.03 
Linear Interpolation for S 
and O, and Factor for V 1.22 10.61 72.20 4.77 23.03 

Factor Method 1.23 10.64 72.20 4.77 23.03 
* S represents speed, V dictates volume count, and O is occupancy. 
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TABLE C-4 Results of Different Data Imputation Methods with Within-station Imputation 

Method Temporal 
Imputation 

Between-Station 
Imputation  

MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% 
Early % Late 

Point-to-
Point 
Method 

w/o 
Temporal 
Imputation 

Simple Average 2.06 16.14 57.09 2.93 39.98 
Linear Interpolation 2.06 16.14 57.09 2.93 39.98 
Factor Method 2.06 16.14 57.09 2.93 39.98 

Average of 
Temporal 
and Spatial 
Imputations 

Simple Average 2.06 16.14 57.09 2.93 39.98 
Linear Interpolation 2.06 16.14 57.09 2.93 39.98 

Factor Method 2.06 16.14 57.09 2.93 39.98 

Mid-
Point 
Method 

w/o 
Temporal 
Imputation 

Simple Average 1.84 14.66 59.97 3.50 36.53 
Linear Interpolation 1.84 14.66 59.97 3.50 36.53 
Factor Method 1.84 14.66 59.97 3.50 36.53 

Average of 
Temporal 
and Spatial 
Imputations 

Simple Average 1.84 14.66 59.97 3.50 36.53 
Linear Interpolation 1.84 14.66 59.97 3.50 36.53 

Factor Method 1.84 14.66 59.97 3.50 36.53 

Hybrid 
Model 1 

w/o 
Temporal 
Imputation 

Simple Average 1.13 10.49 68.52 10.91 20.56 
Linear Interpolation 1.12 10.41 68.70 10.91 20.39 
Linear Interpolation for S 
and O, and Factor for V 1.14 10.61 68.52 10.91 20.56 

Factor Method 1.14 10.72 68.52 10.68 20.79 

Average of 
Temporal 
and Spatial 
Imputations 

Simple Average 1.14 10.53 68.52 10.91 20.56 
Linear Interpolation 1.13 10.48 68.52 10.91 20.56 
Linear Interpolation for S 
and O, and Factor for V 1.14 10.59 68.52 10.91 20.56 

Factor Method 1.17 10.84 67.15 10.91 21.94 

Hybrid 
Model 2 

w/o 
Temporal 
Imputation 

Simple Average 1.20 10.48 73.58 4.77 21.65 
Linear Interpolation 1.20 10.48 73.58 4.77 21.65 
Linear Interpolation for S 
and O, and Factor for V 1.20 10.48 73.58 4.77 21.65 

Factor Method 1.20 10.48 73.58 4.77 21.65 

Average of 
Temporal 
and Spatial 
Imputations 

Simple Average 1.20 10.48 73.58 4.77 21.65 
Linear Interpolation 1.20 10.48 73.58 4.77 21.65 
Linear Interpolation for S 
and O, and Factor for V 1.20 10.48 73.58 4.77 21.65 

Factor Method 1.20 10.48 73.58 4.77 21.65 
* S represents speed, V dictates volume count, and O is occupancy. 
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C.3 Impacts of Intrinsic Errors 

TABLE C-5 Impacts of Intrinsic Errors on Travel Time Estimation Performance for Simulated 
Uncongested Conditions 

Method Cases MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Point-to-Point 
Method  

w/o Errors 0.121 1.92 100 0 0 
w/ 

Intrinsic 
Errors 

Average 0.123 1.95 100 0 0 
Minimum 0.121 1.92 100 0 0 
Maximum 0.125 1.98 100 0 0 

Mid-Point 
Method 

w/o Errors 0.082 1.31 100 0 0 
w/ 

Intrinsic 
Errors 

Average 0.083 1.33 100 0 0 
Minimum 0.081 1.30 100 0 0 
Maximum 0.085 1.36 100 0 0 

Hybrid Model 1 

w/o Errors 0.082 1.31 100 0 0 
w/ 

Intrinsic 
Errors 

Average 0.083 1.33 100 0 0 
Minimum 0.081 1.3 100 0 0 
Maximum 0.085 1.36 100 0 0 

Hybrid Model 2 

w/o Errors 0.082 1.31 100 0 0 
w/ 

Intrinsic 
Errors 

Average 0.083 1.33 100 0 0 
Minimum 0.081 1.30 100 0 0 
Maximum 0.085 1.36 100 0 0 
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TABLE C-6 Impacts of Intrinsic Errors on Travel Time Estimation Performance for Simulated 
Incident Case 1 between 7:30 A.M. and 8:30 A.M. 

Method Cases MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Point-to-Point 
Method 

w/o Errors 2.07 16.28 57.32 1.78 40.90 
w/ 

Intrinsic 
Errors 

Average 2.03 16.02 57.84 2.0 40.16 
Minimum 1.96 15.43 54.16 1.72 38.43 
Maximum 2.13 16.73 59.62 3.04 44.06 

Mid-Point 
Method 

w/o Errors 1.86 14.78 59.05 4.19 36.76 
w/ 

Intrinsic 
Errors 

Average 1.83 14.59 60.24 3.95 35.81 
Minimum 1.76 14.08 58.24 3.10 34.18 
Maximum 1.91 15.15 62.26 4.77 37.79 

Hybrid Model 1 

w/o Errors 1.11 10.24 70.59 10.34 19.07 
w/ 

Intrinsic 
Errors 

Average 1.62 13.59 63.18 10.24 26.59 
Minimum 1.27 11.00 59.51 3.91 21.94 
Maximum 2.00 16.03 69.33 14.36 30.90 

Hybrid Model 2 

w/o Errors 1.15 10.12 74.50 3.33 22.17 
w/ 

Intrinsic 
Errors 

Average 1.58 12.87 64.59 4.24 31.17 
Minimum 1.23 10.66 61.17 2.59 22.34 
Maximum 1.75 13.97 71.17 6.49 34.75 
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C.4 Impacts of Systematic Errors 

TABLE C-7a Impacts of Systematic Errors on Travel Time Estimation Performance for 
Simulated Uncongested Conditions without Data Filtering 

Method Cases  MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Point-to-Point 
Method 

w/o Errors 0.12 1.92 100 0 0 
Case 1 0.17 2.67 100 0 0 
Case 2 0.22 3.51 100 0 0 
Case 3 0.26 4.07 100 0 0 
Case 4 0.23 3.65 100 0 0 
Case 5 0.32 5.09 100 0 0 
Case 6 0.40 6.29 100 0 0 
Case 7 0.09 1.43 100 0 0 
Case 8 0.08 1.29 100 0 0 
Case 9 0.10 1.58 99.73 0.27 0 
Case 10 0.08 1.26 100 0 0 
Case 11 0.11 1.75 99.53 0.47 0 
Case 12 0.24 3.85 87.54 12.46 0 

Mid-Point 
Method 

w/o Errors 0.08 1.31 100 0 0 
Case 1 0.12 1.91 100 0 0 
Case 2 0.15 2.30 100 0 0 
Case 3 0.21 3.24 100 0 0 
Case 4 0.18 2.88 100 0 0 
Case 5 0.28 4.51 100 0 0 
Case 6 0.37 5.85 100 0 0 
Case 7 0.08 1.33 100 0 0 
Case 8 0.10 1.60 99.82 0.18 0 
Case 9 0.16 2.54 93.85 6.15 0 
Case 10 0.10 1.52 99.91 0.09 0 
Case 11 0.19 3.07 91.19 8.81 0 
Case 12 0.35 5.57 83.58 16.42 0 

Hybrid Model 1 

w/o Errors 0.08 1.31 100 0 0 
Case 1 0.12 1.91 100 0 0 
Case 2 0.15 2.30 100 0 0 
Case 3 0.21 3.24 100 0 0 
Case 4 0.18 2.88 100 0 0 
Case 5 0.28 4.51 100 0 0 
Case 6 0.37 5.85 100 0 0 
Case 7 0.08 1.27 100 0 0 
Case 8 0.09 1.45 99.95 0.05 0 



Decision Support Tools to Support the Operations of TMCs 

 158 

TABLE C-7a Impacts of Systematic Errors on Travel Time Estimation Performance for 
Simulated Uncongested Conditions without Data Filtering (Con’t) 

Method Cases  MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Hybrid Model 1 

Case 9 0.15 2.47 94.89 5.11 0 
Case 10 0.10 1.52 99.89 0.11 0 
Case 11 0.19 3.04 91.19 8.81 0 
Case 12 0.33 5.30 83.58 16.42 0 

Hybrid Model 2 

w/o Errors 0.08 1.31 100 0 0 
Case 1 0.12 1.91 100 0 0 
Case 2 0.15 2.30 100 0 0 
Case 3 0.21 3.24 100 0 0 
Case 4 0.18 2.88 100 0 0 
Case 5 0.28 4.51 100 0 0 
Case 6 0.37 5.85 100 0 0 
Case 7 0.21 3.40 86.59 13.41 0 
Case 8 0.27 4.30 86.37 13.63 0 
Case 9 0.38 5.96 87.06 12.95 0 
Case 10 0.10 1.67 99.34 0.66 0 
Case 11 0.32 5.13 90.77 9.23 0 
Case 12 0.71 11.29 83.58 16.42 0 

* Note that the definition for each case is explained in Table 3-12. 

TABLE C-7b Impacts of Systematic Errors on Travel Time Estimation Performance for 
Simulated Uncongested Conditions with Data Filtering 

Method Cases  MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Point-to-Point 
Method 

w/o Errors 0.12 1.92 100 0 0 
Case 1 0.16 2.47 100 0 0 
Case 2 0.17 2.63 100 0 0 
Case 3 0.21 3.27 100 0 0 
Case 4 0.16 2.53 100 0 0 
Case 5 0.21 3.28 100 0 0 
Case 6 0.34 5.35 100 0 0 
Case 7 0.09 1.43 100 0 0 
Case 8 0.08 1.29 100 0 0 
Case 9 0.10 1.58 99.73 0.27 0 
Case 10 0.08 1.26 100 0 0 
Case 11 0.11 1.76 99.43 0.57 0 
Case 12 0.24 3.85 87.54 12.46 0 

Mid-Point 
Method 

w/o Errors 0.08 1.31 100 0 0 
Case 1 0.11 1.72 100 0 0 
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TABLE C-7b Impacts of Systematic Errors on Travel Time Estimation Performance for 
Simulated Uncongested Conditions with Data Filtering (Con’t) 

Method Cases  MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Mid-Point 
Method 

Case 2 0.11 1.77 100 0 0 
Case 3 0.17 2.69 100 0 0 
Case 4 0.11 1.80 100 0 0 
Case 5 0.17 2.69 100 0 0 
Case 6 0.33 5.15 100 0 0 
Case 7 0.08 1.33 100 0 0 
Case 8 0.10 1.60 99.65 0.36 0 
Case 9 0.16 2.55 94.00 6.01 0 
Case 10 0.10 1.53 99.94 0.06 0 
Case 11 0.19 3.08 91.19 8.81 0 
Case 12 0.35 5.57 83.58 16.42 0 

Hybrid Model 1 

w/o Errors 0.08 1.31 100 0 0 
Case 1 0.11 1.72 100 0 0 
Case 2 0.11 1.77 100 0 0 
Case 3 0.17 2.69 100 0 0 
Case 4 0.11 1.80 100 0 0 
Case 5 0.17 2.69 100 0 0 
Case 6 0.33 5.15 100 0 0 
Case 7 0.08 1.27 100 0 0 
Case 8 0.08 1.32 100 0 0 
Case 9 0.13 2.11 98.66 1.34 0 
Case 10 0.10 1.53 99.89 0.11 0 
Case 11 0.19 3.04 91.19 8.81 0 
Case 12 0.31 4.91 83.58 16.42 0 

Hybrid Model 2 

w/o Errors 0.08 1.31 100 0 0 
Case 1 0.11 1.72 100 0 0 
Case 2 0.11 1.77 100 0 0 
Case 3 0.17 2.68 100 0 0 
Case 4 0.11 1.80 100 0 0 
Case 5 0.17 2.69 100 0 0 
Case 6 0.33 5.15 100 0 0 
Case 7 0.21 3.40 86.59 13.41 0 
Case 8 0.27 4.30 86.37 13.63 0 
Case 9 0.38 5.95 87.06 12.95 0 
Case 10 0.10 1.67 99.34 0.66 0 
Case 11 0.32 5.13 90.77 9.23 0 
Case 12 0.71 11.29 83.58 16.42 0 
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TABLE C-8a Impacts of Systematic Errors on Travel Time Estimation Performance for 
Simulated Incident Conditions without Data Filtering 

Method Cases  MAE 
(Min.) MAPE (%) Reliability 

(%) % Early % Late 

Point-to-
Point 
Method  

w/o Errors 2.07 16.28 57.32 1.78 40.90 
Case 1 2.09 16.47 57.50 1.61 40.90 
Case 2 2.15 16.97 57.50 1.61 40.90 
Case 3 2.25 17.98 57.27 1.61 41.13 
Case 4 2.52 19.66 55.20 0.23 44.57 
Case 5 2.76 21.81 53.99 0 46.01 
Case 6 2.92 23.40 52.67 0 47.33 
Case 7 2.04 16.09 58.07 3.10 38.83 
Case 8 2.02 15.92 60.14 3.50 36.36 
Case 9 1.93 15.70 56.40 8.73 34.87 
Case 10 1.84 14.71 58.36 6.78 34.87 
Case 11 1.83 15.20 61.69 9.88 28.43 
Case 12 2.30 20.40 46.76 35.38 17.86 

Mid-Point 
Method 

w/o Errors 1.86 14.78 59.05 4.19 36.76 
Case 1 1.89 14.98 59.51 3.10 37.39 
Case 2 1.91 15.11 59.10 2.64 38.25 
Case 3 2.04 16.28 59.45 1.61 38.94 
Case 4 2.49 19.35 53.65 0.00 46.35 
Case 5 2.81 22.15 52.56 0.00 47.44 
Case 6 3.01 24.03 51.23 0.00 48.77 
Case 7 1.83 14.67 60.77 4.25 34.98 
Case 8 1.82 14.61 60.20 5.05 34.75 
Case 9 1.80 15.31 60.60 9.82 29.58 
Case 10 1.63 13.55 67.20 6.55 26.25 
Case 11 1.82 16.10 54.80 22.46 22.75 
Case 12 3.46 29.78 33.95 48.48 17.58 

Hybrid 
Model 1 

w/o Errors 1.11 10.24 70.59 10.34 19.07 
Case 1 1.08 9.90 73.75 6.72 19.53 
Case 2 1.09 9.95 73.75 6.72 19.53 
Case 3 1.20 10.53 76.62 2.41 20.96 
Case 4 1.15 10.19 76.68 2.13 21.19 
Case 5 1.21 10.73 76.79 1.78 21.42 
Case 6 1.36 12.09 76.28 0.92 22.80 
Case 7 1.45 12.62 69.84 13.50 16.66 
Case 8 1.46 13.01 59.51 23.84 16.66 
Case 9 1.01 10.03 69.73 15.57 14.70 
Case 10 1.20 11.23 66.17 18.09 15.74 
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TABLE C-8a Impacts of Systematic Errors on Travel Time Estimation Performance for 
Simulated Incident Conditions without Data Filtering (Con’t) 

Method Cases  MAE 
(Min.) MAPE (%) Reliability 

(%) % Early % Late 

Hybrid 
Model 1 

Case 11 1.46 13.01 59.16 24.35 16.48 
Case 12 1.84 16.97 54.68 30.67 14.65 

Hybrid 
Model 2 

w/o Errors 1.15 10.12 74.50 3.33 22.17 
Case 1 1.16 10.17 74.38 2.99 22.63 
Case 2 1.16 10.21 74.84 2.53 22.63 
Case 3 1.25 11.05 74.38 1.49 24.12 
Case 4 1.99 15.88 60.02 0.23 39.75 
Case 5 2.37 19.00 54.62 0.23 45.15 
Case 6 2.54 20.62 53.88 0.23 45.89 
Case 7 1.50 13.11 64.39 15.11 20.51 
Case 8 1.25 10.95 71.22 7.64 21.14 
Case 9 1.10 10.47 75.07 8.73 16.20 
Case 10 1.58 13.26 61.86 15.91 22.23 
Case 11 1.69 14.70 52.38 22.92 24.70 
Case 12 5.62 42.88 41.53 39.06 19.41 

 

TABLE C-8b Impacts of Systematic Errors on Travel Time Estimation Performance for 
Simulated Uncongested Conditions with Data Filtering 

Method Cases  MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Point-to-Point 
Method 

w/o Errors 2.07 16.28 57.32 1.78 40.90 
Case 1 2.08 16.33 57.38 1.72 40.90 
Case 2 2.08 16.35 57.38 1.72 40.90 
Case 3 2.18 17.18 57.27 1.61 41.13 
Case 4 2.08 16.47 58.36 2.13 39.52 
Case 5 2.30 18.21 58.64 0.23 41.13 
Case 6 2.79 22.03 52.84 0.00 47.16 
Case 7 2.04 16.08 58.76 3.10 38.14 
Case 8 2.01 15.91 60.14 3.50 36.36 
Case 9 2.03 15.97 60.94 2.87 36.19 
Case 10 1.99 15.65 57.90 4.37 37.74 
Case 11 1.97 15.71 57.84 6.38 35.78 
Case 12 2.11 17.76 56.98 13.79 29.24 

Mid-Point 
Method 

w/o Errors 1.86 14.78 59.05 4.19 36.76 
Case 1 1.87 14.79 58.99 3.62 37.39 
Case 2 1.87 14.80 58.99 3.62 37.39 
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TABLE C-8b Impacts of Systematic Errors on Travel Time Estimation Performance for 
Simulated Uncongested Conditions with Data Filtering (Con’t) 

Method Cases  MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Mid-Point 
Method 

Case 3 2.00 15.83 59.33 1.72 38.94 
Case 4 1.89 15.20 60.37 2.70 36.93 
Case 5 2.18 17.33 58.07 0.23 41.70 
Case 6 2.90 22.95 52.67 0.00 47.33 
Case 7 1.84 14.68 60.83 4.42 34.75 
Case 8 1.82 14.62 60.20 5.05 34.75 
Case 9 1.84 14.84 59.74 5.51 34.75 
Case 10 1.81 14.59 61.34 5.05 33.60 
Case 11 1.89 15.81 61.34 8.39 30.27 
Case 12 2.77 22.59 48.02 21.42 30.56 

Hybrid Model 1 

w/o Errors 1.11 10.24 70.59 10.34 19.07 
Case 1 1.14 10.47 71.11 9.36 19.53 
Case 2 1.14 10.49 71.11 9.36 19.53 
Case 3 1.09 9.80 75.65 4.02 20.33 
Case 4 1.66 13.64 69.39 3.04 27.57 
Case 5 1.73 14.22 66.69 2.70 30.61 
Case 6 1.64 13.84 67.09 2.64 30.27 
Case 7 1.44 12.57 69.84 13.50 16.66 
Case 8 1.46 12.93 60.77 22.57 16.66 
Case 9 1.05 10.35 66.97 19.30 13.73 
Case 10 1.61 13.69 66.40 8.90 24.70 
Case 11 1.52 12.94 68.87 5.74 25.39 
Case 12 1.46 13.05 64.62 13.79 21.60 

Hybrid Model 2 

w/o Errors 1.15 10.12 74.50 3.33 22.17 
Case 1 1.15 10.09 74.38 2.99 22.63 
Case 2 1.15 10.09 74.38 2.99 22.63 
Case 3 1.22 10.71 74.84 1.61 23.55 
Case 4 1.28 11.17 70.76 5.28 23.95 
Case 5 1.53 13.05 67.43 2.35 30.21 
Case 6 2.50 20.13 53.88 0.23 45.89 
Case 7 1.50 13.13 64.45 15.28 20.28 
Case 8 1.25 10.93 71.22 7.64 21.14 
Case 9 1.08 9.78 75.53 4.65 19.82 
Case 10 1.22 10.78 70.42 9.02 20.56 
Case 11 1.50 13.05 64.96 12.23 22.80 
Case 12 3.46 25.72 55.43 15.16 29.41 
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TABLE C-9 Impacts of Systematic Errors in Low Speed Measurements on Travel Time 
Estimation Performance for Simulated Incident Conditions  

Method Cases  MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Point-to-Point 
Method 

w/o Errors 2.07 16.28 57.32 1.78 40.90 
20% Increase in Low Speed 2.24 17.46 55.08 0.34 44.57 
40% Increase in Low Speed 2.42 18.86 54.62 0.11 45.26 
20% Decrease in Low Speed 1.92 15.38 57.73 6.09 36.19 
40% Decrease in Low Speed 1.76 14.50 63.47 7.58 28.95 

Mid-Point 
Method 

w/o Errors 1.86 14.78 59.05 4.19 36.76 
20% Increase in Low Speed 2.08 16.31 60.65 1.21 38.14 
40% Increase in Low Speed 2.28 17.76 54.22 0.98 44.80 
20% Decrease in Low Speed 1.68 13.75 62.67 7.06 30.27 
40% Decrease in Low Speed 1.59 13.56 66.28 9.82 23.89 

Hybrid Model 1 

w/o Errors 1.11 10.24 70.59 10.34 19.07 
20% Increase in Low Speed 1.18 10.68 67.89 11.83 20.28 
40% Increase in Low Speed 1.23 10.87 68.06 10.68 21.25 
20% Decrease in Low Speed 1.12 10.31 68.35 12.58 19.07 
40% Decrease in Low Speed 1.25 11.24 67.78 10.97 21.25 

5% Increase in Volume 1.10 9.91 72.95 7.98 19.07 
10% Increase in Volume 1.17 10.91 64.33 16.54 19.13 
5% Decrease in Volume 1.17 11.10 67.55 14.30 18.15 
10% Decrease in Volume 1.08 10.06 71.74 9.59 18.67 

Hybrid Model 2 

w/o Errors 1.15 10.12 74.50 3.33 22.17 
20% Increase in Low Speed 1.37 11.52 71.97 1.21 26.82 
40% Increase in Low Speed 1.66 13.57 68.18 0.98 30.84 
20% Decrease in Low Speed 1.46 12.33 61.69 16.94 21.37 
40% Decrease in Low Speed 1.88 15.19 57.15 16.83 26.02 

5% Increase in Volume 1.15 10.15 74.50 3.33 22.17 
10% Increase in Volume 1.16 10.18 74.55 3.50 21.94 
5% Decrease in Volume 1.15 10.12 74.50 3.33 22.17 
10% Decrease in Volume 1.15 10.12 74.50 3.33 22.17 

 

 

 

 

 

 

 



Decision Support Tools to Support the Operations of TMCs 

 164 

C.5 Impacts of Incidental and Structural Failures 

TABLE C-10 Impacts of Incidental and Structural Failures on Travel Time Estimation 
Performance for Simulated Uncongested Conditions  

Method Cases  MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Point to Point 
Method  

w/o Errors 0.12 1.92 100 0 0 
w/ Incidental and 
Structural Errors 0.14 2.18 100 0 0 

Mid-Point 
Method 

w/o Errors 0.08 1.31 100 0 0 
w/ Incidental and 
Structural Errors 0.10 1.53 100 0 0 

Hybrid Model 1 
w/o Errors 0.08 1.31 100 0 0 

w/ Incidental and 
Structural Errors 0.10 1.53 100 0 0 

Hybrid Model 2 
w/o Errors 0.08 1.31 100 0 0 

w/ Incidental and 
Structural Errors 0.10 1.54 100 0 0 

 

TABLE C-11 Impacts of Incidental and Structural Failures on Travel Time Estimation 
Performance for Simulated Incident Conditions 

Method Cases  MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) % Early % Late 

Point to Point 
Method  

w/o Errors 2.07 16.28 57.32 1.78 40.90 
w/ Incidental and 
Structural Errors 2.04 16.21 55.66 6.61 37.74 

Mid-Point 
Method 

w/o Errors 1.86 14.78 59.05 4.19 36.76 
w/ Incidental and 
Structural Errors 2.06 17.00 58.07 10.57 31.36 

Hybrid Model 1 
w/o Errors 1.11 10.24 70.59 10.34 19.07 

w/ Incidental and 
Structural Errors 1.80 16.36 58.13 25.16 16.72 

Hybrid Model 2 
w/o Errors 1.15 10.12 74.50 3.33 22.17 

w/ Incidental and 
Structural Errors 1.95 17.58 62.44 15.45 22.11 
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C.6 Impacts of Travel Time Updating Frequency 

TABLE C-12 Travel Time Estimation Performances with Different Travel Time Updating 
Frequencies for Simulated Uncongested Conditions  

Method Updating 
Frequency 

MAE 
(Minutes) MAPE (%) Reliability 

(%) % Early % Late 

Point-to-Point 
Method 

1-minute 0.14 2.20 100 0 0 
2-minute 0.12 1.92 100 0 0 
3-minute 0.12 1.91 100 0 0 
4-minute 0.12 1.90 100 0 0 
5-minute 0.12 1.86 100 0 0 

Mid-Point 
Method 

1-minute 0.10 1.62 100 0 0 
2-minute 0.08 1.31 100 0 0 
3-minute 0.07 1.16 100 0 0 
4-minute 0.07 1.15 100 0 0 
5-minute 0.06 1.03 100 0 0 

Hybrid Model 1 

1-minute 0.10 1.62 100 0 0 
2-minute 0.08 1.31 100 0 0 
3-minute 0.07 1.16 100 0 0 
4-minute 0.07 1.15 100 0 0 
5-minute 0.07 1.03 100 0 0 

Hybrid Model 2 

1-minute 0.10 1.62 100 0 0 
2-minute 0.08 1.31 100 0 0 
3-minute 0.07 1.16 100 0 0 
4-minute 0.07 1.15 100 0 0 
5-minute 0.07 1.06 99.89 0.11 0 
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TABLE C-13 Travel Time Estimation Performances with Different Travel Time Updating 
Frequencies for Simulated Incident Scenario 1  

Method Updating 
Frequency 

MAE 
(Minutes) MAPE (%) Reliability 

(%) % Early % Late 

Point-to-Point 
Method 

1-minute 1.99 15.63 59.27 0.80 39.93 
2-minute 2.07 16.28 57.32 1.78 40.90 
3-minute 2.04 16.05 55.83 3.83 40.35 
4-minute 2.29 18.19 48.17 8.67 43.17 
5-minute 2.25 17.58 52.85 6.75 40.41 

Mid-Point 
Method 

1-minute 1.79 14.23 60.99 1.89 37.12 
2-minute 1.86 14.78 59.05 4.19 36.76 
3-minute 1.86 14.82 57.62 6.15 36.23 
4-minute 2.08 16.81 47.70 14.37 37.93 
5-minute 2.12 16.77 54.37 7.92 37.71 

Hybrid Model 1 

1-minute 1.10 9.85 73.38 9.07 17.56 
2-minute 1.11 10.24 70.59 10.34 19.07 
3-minute 1.15 10.54 69.04 12.46 18.49 
4-minute 1.54 13.77 46.77 25.31 27.92 
5-minute 1.27 11.29 66.33 8.80 24.87 

Hybrid Model 2 

1-minute 1.16 10.21 74.24 2.58 23.18 
2-minute 1.15 10.12 74.50 3.33 22.17 
3-minute 1.31 11.31 70.55 4.64 24.81 
4-minute 1.35 11.85 55.38 17.69 26.93 
5-minute 1.34 11.25 69.56 6.86 23.58 
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C.7 Impacts of Travel Time Link Length 

TABLE C-14 Travel Time Estimation Performances with Different Travel Time Link Lengths 
for Simulated Uncongested Conditions 

Method Origin-Destination Distance 
(Miles) 

MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% 
Early % Late 

Point-to-Point 
Method 

DS-1523E-DS-1549E 4.24 0.05 1.17 100 0 0 
DS-1521E-DS-1549E 4.55 0.05 1.11 99.64 0.08 0.28 
DS-1517E-DS-1549E 5.27 0.07 1.27 100 0 0 
DS-1509E-DS-1549E 6.42 0.12 1.92 100 0 0 

Mid-Point 
Method 

DS-1523E-DS-1549E 4.24 0.05 1.16 100 0 0 
DS-1521E-DS-1549E 4.55 0.05 1.15 99.69 0.08 0.23 
DS-1517E-DS-1549E 5.27 0.06 1.09 100 0 0 
DS-1509E-DS-1549E 6.42 0.08 1.31 100 0 0 

Hybrid Model 1 

DS-1523E-DS-1549E 4.24 0.05 1.16 100 0 0 
DS-1521E-DS-1549E 4.55 0.05 1.15 99.69 0.08 0.23 
DS-1517E-DS-1549E 5.27 0.06 1.09 100 0 0 
DS-1509E-DS-1549E 6.42 0.08 1.31 100 0 0 

Hybrid Model 2 

DS-1523E-DS-1549E 4.24 0.05 1.16 100 0 0 
DS-1521E-DS-1549E 4.55 0.05 1.15 99.69 0.08 0.23 
DS-1517E-DS-1549E 5.27 0.06 1.09 100 0 0 
DS-1509E-DS-1549E 6.42 0.08 1.31 100 0 0 
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TABLE C-15 Travel Time Estimation Performances with Different Travel Time Link Lengths 
for Simulated Incident Scenario 1 

Method Origin-Destination Distance 
(Miles) 

MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% 
Early % Late 

Point-to-Point 
Method 

DS-1523E-DS-1549E 4.24 0.92 14.00 86.78 0 13.22 
DS-1521E-DS-1549E 4.55 1.07 13.27 77.93 4.59 17.48 
DS-1517E-DS-1549E 5.27 1.86 16.59 57.41 2.49 40.10 
DS-1509E-DS-1549E 6.42 2.07 16.28 57.32 1.78 40.90 

Mid-Point 
Method 

DS-1523E-DS-1549E 4.24 1.13 17.15 73.36 0 26.64 
DS-1521E-DS-1549E 4.55 1.44 17.28 75.94 0.09 23.97 
DS-1517E-DS-1549E 5.27 1.74 15.85 58.30 1.38 40.32 
DS-1509E-DS-1549E 6.42 1.86 14.78 59.05 4.19 36.76 

Hybrid Model 1 

DS-1523E-DS-1549E 4.24 0.63 10.10 91.98 0.35 7.67 
DS-1521E-DS-1549E 4.55 0.85 11.09 87.02 0.13 12.85 
DS-1517E-DS-1549E 5.27 0.97 9.97 75.48 6.10 18.43 
DS-1509E-DS-1549E 6.42 1.11 10.24 70.59 10.34 19.07 

Hybrid Model 2 

DS-1523E-DS-1549E 4.24 0.88 13.69 91.40 0 8.60 
DS-1521E-DS-1549E 4.55 1.05 13.50 81.94 4.59 13.47 
DS-1517E-DS-1549E 5.27 1.05 10.90 75.52 3.38 21.10 
DS-1509E-DS-1549E 6.42 1.15 10.12 74.50 3.33 22.17 
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C.8 Impacts of Travel Time Posting Range 

TABLE C-16 Travel Time Estimation Reliability with Different Posted Travel Time Ranges for 
Simulated Uncongested Conditions 

Method Range of Posted 
Travel Time 

Reliability 
(%) % Early % Late 

Point-to-Point Method 

[TT-2, TT+2] 100 0 0 
[TT-1, TT+2] 100 0 0 
[TT-1, TT+1] 99.29 0 0.71 
[TT-0.5, TT+0.5] 70.07 0.42 29.52 

Mid-Point Method 

[TT-2, TT+2] 100 0 0 
[TT-1, TT+2] 100 0 0 
[TT-1, TT+1] 99.29 0 0.71 
[TT-0.5, TT+0.5] 70.07 0.42 29.52 

Hybrid Model 1 

[TT-2, TT+2] 100 0 0 
[TT-1, TT+2] 100 0 0 
[TT-1, TT+1] 99.29 0 0.71 
[TT-0.5, TT+0.5] 70.07 0.42 29.52 

Hybrid Model 2 

[TT-2, TT+2] 100 0 0 
[TT-1, TT+2] 100 0 0 
[TT-1, TT+1] 99.29 0 0.71 
[TT-0.5, TT+0.5] 70.07 0.42 29.52 
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TABLE C-17 Travel Time Estimation Reliability with Different Posted Travel Time Ranges for 
Simulated Incident Conditions  

Method Range of Posted 
Travel Time 

Reliability 
(%) % Early % Late 

Point-to-Point Method 

[TT-2, TT+3] 57.32 1.78 40.90 
[TT-2, TT+4] 58.93 1.78 39.29 
[TT-2, TT+5] 59.97 1.78 38.25 
[TT-1, TT+4] 56.58 4.14 39.29 
[TT-1, TT+5] 57.61 4.14 38.25 
[TT-1, TT+6] 58.42 4.14 37.45 

Mid-Point Method 

[TT-2, TT+3] 59.05 4.19 36.76 
[TT-2, TT+4] 64.85 4.19 30.96 
[TT-2, TT+5] 68.18 4.19 27.63 
[TT-1, TT+4] 62.44 6.61 30.96 
[TT-1, TT+5] 65.77 6.61 27.63 
[TT-1, TT+6] 67.57 6.61 25.85 

Hybrid Model 1 

[TT-2, TT+3] 70.59 10.34 19.07 
[TT-2, TT+4] 73.12 10.34 16.54 
[TT-2, TT+5] 75.13 10.34 14.53 
[TT-1, TT+4] 65.02 18.44 16.54 
[TT-1, TT+5] 67.03 18.44 14.53 
[TT-1, TT+6] 68.12 18.44 13.44 

Hybrid Model 2 

[TT-2, TT+3] 74.50 3.33 22.17 
[TT-2, TT+4] 75.88 3.33 20.79 
[TT-2, TT+5] 75.88 3.33 20.79 
[TT-1, TT+4] 69.67 9.54 20.79 
[TT-1, TT+5] 69.67 9.54 20.79 
[TT-1, TT+6] 70.25 9.54 20.22 
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